Ejemplo n.º 1
0
def single_link_alternative_routes_graph(name, AllOutput, graph, crs):
    """
    This is the function to analyse roads with a single link disruption calculating
    an alternative route. The input is a graph that is downloaded from OSM.
    """
    logging.info(
        "----------------------------- {} -----------------------------".
        format(name))
    print("\nExecuting analysis..")

    startstart = time.time()

    # save the graph as a shapefile
    nf.graph_to_shp(graph, os.path.join(AllOutput,
                                        '{}_edges.shp'.format(name)),
                    os.path.join(AllOutput, '{}_nodes.shp'.format(name)))

    # CALCULATE CRITICALITY
    gdf = nf.criticality_single_link_osm(
        graph)  # TODO: input the type of roads to analyse
    logging.info(
        "Function [criticality_single_link]: executing for {}".format(name))

    # save to shapefile
    gdf.crs = {'init': 'epsg:{}'.format(crs)}
    save_name = os.path.join(AllOutput, '{}_criticality.shp'.format(name))
    nf.gdf_to_shp(gdf, save_name)

    print("\nThe shapefile with calculated criticality can be found here:\n{}".
          format(save_name))

    end = time.time()
    logging.info("Full analysis [single_link_alternative_routes]: {}".format(
        nf.timer(startstart, end)))
Ejemplo n.º 2
0
def multi_link_alternative_routes_graph(name, AllOutput, graph, crs,
                                        HazardDataDict):
    """Calculates if road segments that are disrupted have an alternative route from node to node
    Args:

    Returns:

    """

    logging.info(
        "----------------------------- {} -----------------------------".
        format(name))
    startstart = time.time()

    print(
        "\nYou have chosen the Multi-link Disruption: Calculate the disruption for all damaged roads. Starting to calculate now...\n"
    )

    # initiate variables
    id_name = 'osmid'

    # intersect graph with hazard data
    graph = nf.hazard_intersect_graph(graph,
                                      HazardDataDict['path'],
                                      HazardDataDict['attribute_name'],
                                      name,
                                      agg=HazardDataDict['aggregation'])

    # CALCULATE CRITICALITY
    gdf = nf.criticality_multi_link_hazard(graph,
                                           HazardDataDict['attribute_name'],
                                           HazardDataDict['threshold'],
                                           id_name)

    # save to shapefile
    gdf.crs = {'init': 'epsg:{}'.format(crs)}
    save_name = os.path.join(AllOutput, '{}_criticality.shp'.format(name))
    nf.gdf_to_shp(gdf, save_name)

    print("\nThe shapefile with calculated criticality can be found here:\n{}".
          format(save_name))

    end = time.time()
    logging.info(
        "Full analysis [multi_link_alternative_routes_graph]: {}".format(
            nf.timer(startstart, end)))
Ejemplo n.º 3
0
def multi_link_od_matrix_graph(name, AllOutput, InputDataDict, HazardDataDict,
                               G, crs):
    """
    Removes all links that are disrupted by a hazard. It takes
    an Origin/Destination matrix as input and calculates the alternative routes for
    each O/D pair, if links are removed between the fastest route from O to D.

    Arguments:
        graph [networkx graph] = the graph with at least the columns that you use in group en sort
        AllOutput [string] = path where the output shapefiles should be saved
        InputDataDict [dictionary] = dictionary of input data used for calculating
            the costs for taking alternative routes
        HazardDataDict [dictionary] = information of hazard data
    """
    logging.info(
        "----------------------------- {} -----------------------------".
        format(name))
    startstart = time.time()

    print(
        "\nYou have chosen the Multi-link Disruption Analysis - to calculate the disruption for an Origin/Destination. You might need to give a bit more input later. Starting to calculate now...\n"
    )

    # initiate variables
    id_name_hazard = None
    weighing = 'distance'  # TODO: make this variable

    # load the input files if they are there
    id_name = 'osmid'  # this is always osmid for a graph from OSM

    if HazardDataDict:
        # there is hazard data available
        if 'ID' in HazardDataDict:
            id_name_hazard = HazardDataDict['ID']

    # not all edges contain the attribute 'geometry' - because of geometry simplification these are streets that are straight and can be computed
    G = nf.add_missing_geoms_graph(G)

    if (id_name_hazard is None) & (len(HazardDataDict) != 0):
        G = nf.hazard_intersect_graph(G,
                                      HazardDataDict['path'],
                                      HazardDataDict['attribute_name'],
                                      name,
                                      agg=HazardDataDict['aggregation'])

    # Add the origin/destination nodes to the network
    ods = nf.read_OD_files(InputDataDict['origin_shapefiles_path'],
                           InputDataDict['o_names'],
                           InputDataDict['destination_shapefiles_path'],
                           InputDataDict['d_names'], InputDataDict['id_od'],
                           crs)

    # Check if the ID's are unique per edge: if not, add an own ID called 'fid'
    if len(set([str(e[-1][id_name])
                for e in G.edges.data(keys=True)])) < len(G.edges()):
        i = 0
        for u, v, k in G.edges(keys=True):
            G[u][v][k]['fid'] = i
            i += 1
        print(
            "Added a new unique identifier field 'fid' because the original field '{}' did not contain unique values per road segment."
            .format(id_name))
        id_name = 'fid'

    ods = nf.create_OD_pairs(ods, G, id_name)
    G = nf.add_od_nodes(G,
                        ods,
                        id_name,
                        name=name,
                        file_output=AllOutput,
                        save_shp=True)

    if weighing == 'time':
        # calculate the time it takes per road segment
        avg_speeds = nf.calc_avg_speed(G,
                                       'highway',
                                       save_csv=True,
                                       save_path=os.path.join(
                                           AllOutput,
                                           'avg_speeds_{}.csv'.format(name)))
        avg_speeds = pd.read_csv(
            os.path.join(AllOutput, 'avg_speeds_{}.csv'.format(name)))
        if len(avg_speeds.loc[avg_speeds['avg_speed'] == 0]) > 0:
            logging.info(
                "An average speed of 50 is used in locations where the maximum speed limit is 0 in OSM data."
            )
            avg_speeds.loc[avg_speeds['avg_speed'] == 0,
                           'avg_speed'] = 50  # this is assumed
        G = nf.assign_avg_speed(G, avg_speeds, 'highway')

        # make a time value of seconds, length of road streches is in meters
        for u, v, k, edata in G.edges.data(keys=True):
            hours = (edata['length'] / 1000) / edata['avgspeed']
            G[u][v][k][weighing] = hours * 3600

    # Calculate the preferred routes
    pref_routes = nf.preferred_routes_od(G,
                                         weighing,
                                         id_name,
                                         ods,
                                         crs,
                                         HazardDataDict,
                                         shortest_route=True,
                                         save_shp=True,
                                         save_pickle=False,
                                         file_output=AllOutput,
                                         name=name)

    # Calculate the criticality
    gdf = nf.criticality_multi_link_hazard_OD(
        G, pref_routes, weighing, HazardDataDict['attribute_name'][0],
        HazardDataDict['threshold'], crs)

    # save graph
    save_name = os.path.join(AllOutput, '{}_criticality.shp'.format(name))
    nf.gdf_to_shp(gdf, save_name)

    print("\nThe shapefile with calculated criticality can be found here:\n{}".
          format(save_name))

    end = time.time()
    logging.info("Full analysis [multi_link_od_matrix_graph]: {}".format(
        nf.timer(startstart, end)))
Ejemplo n.º 4
0
def single_link_alternative_routes(name, AllOutput, InputDataDict, crs,
                                   snapping, SnappingThreshold, pruning,
                                   PruningThreshold):
    """
    This is the function to analyse roads with a single link disruption and
    an alternative route.

    Arguments:
        AllOutput [string] = path where the output shapefiles should be saved
        InputDataDict [dictionary] = dictionary of input data used for calculating
            the costs for taking alternative routes
        ParameterNamesDict [dictionary] = names of the parameters used for calculating
            the costs for taking alternative routes
    """
    logging.info(
        "----------------------------- {} -----------------------------".
        format(name))
    startstart = time.time()

    print(
        "\nYou have chosen the Single Link Alternative Route Finder. You might need to give a bit more input later. Starting to calculate now...\n"
    )

    if 'id_name' in InputDataDict:
        id_name = InputDataDict['id_name']

    if 'road_usage_data_path' in InputDataDict:
        road_usage_data = pd.read_excel(InputDataDict['road_usage_data_path'])
        road_usage_data.dropna(axis=0,
                               how='all',
                               subset=['vehicle_type'],
                               inplace=True)
        aadt_names = [
            aadt_name for aadt_name in road_usage_data['attribute_name']
            if aadt_name == aadt_name
        ]
    else:
        aadt_names = None
        road_usage_data = pd.DataFrame()

    G = create_graph_from_shapefiles(name, AllOutput, InputDataDict, None, crs,
                                     snapping, SnappingThreshold, pruning,
                                     PruningThreshold)

    # CALCULATE CRITICALITY
    gdf = nf.criticality_single_link(G,
                                     id_name,
                                     roadUsageData=road_usage_data,
                                     aadtNames=aadt_names)
    logging.info("Function [criticality_single_link]: executing")

    # Extra calculation possible (like multiplying the disruption time with the cost for disruption)
    # todo: input here this option

    # save to shapefile
    gdf.crs = {'init': 'epsg:{}'.format(crs)}
    save_name = os.path.join(AllOutput, '{}_criticality.shp'.format(name))
    nf.gdf_to_shp(gdf, save_name)

    print("\nThe shapefile with calculated criticality can be found here:\n{}".
          format(save_name))

    end = time.time()
    logging.info("Full analysis [single_link_alternative_routes]: {}".format(
        nf.timer(startstart, end)))
Ejemplo n.º 5
0
def multi_link_alternative_routes(name, AllOutput, InputDataDict,
                                  HazardDataDict, crs, snapping,
                                  SnappingThreshold, pruning,
                                  PruningThreshold):
    """
    This is the function to analyse roads with a multi link disruption calculating
    an alternative route.
    """

    logging.info(
        "----------------------------- {} -----------------------------".
        format(name))
    startstart = time.time()

    print(
        "\nYou have chosen the Multi-link Disruption Alternative Route Finder. You might need to give a bit more input later. Starting to calculate now...\n"
    )

    # initiate variables
    id_name_hazard = None

    # load the input files if they are there
    if 'id_name' in InputDataDict:
        id_name = InputDataDict['id_name']

    if HazardDataDict:
        # there is hazard data available
        if 'ID' in HazardDataDict:
            id_name_hazard = HazardDataDict['ID']

    G = create_graph_from_shapefiles(name, AllOutput, InputDataDict,
                                     HazardDataDict, crs, snapping,
                                     SnappingThreshold, pruning,
                                     PruningThreshold)

    if (id_name_hazard is None) & (len(HazardDataDict) != 0):
        G = nf.hazard_intersect_graph(G,
                                      HazardDataDict['path'],
                                      HazardDataDict['attribute_name'],
                                      name,
                                      agg=HazardDataDict['aggregation'])

    # CALCULATE CRITICALITY
    gdf = nf.criticality_multi_link_hazard(G, HazardDataDict['attribute_name'],
                                           HazardDataDict['threshold'])
    logging.info("Function [criticality_single_link]: executing")

    # Extra calculation possible (like multiplying the disruption time with the cost for disruption)
    # todo: input here this option

    # save to shapefile
    gdf.crs = {'init': 'epsg:{}'.format(crs)}
    save_name = os.path.join(AllOutput, '{}_criticality.shp'.format(name))
    nf.gdf_to_shp(gdf, save_name)

    print("\nThe shapefile with calculated criticality can be found here:\n{}".
          format(save_name))

    end = time.time()
    logging.info("Full analysis [multi_link_alternative_routes]: {}".format(
        nf.timer(startstart, end)))