Ejemplo n.º 1
0
def test_project_xyz_vs_geo():
    """
    ensure that project_onto works the same with xyz vs lat_lon points
    """
    net_coords = {'grid-1': [0.0, 0.0], 
                  'grid-2': [10.0, 10.0]}

    net_edges = [('grid-1', 'grid-2')]
    
    node_coords = {0: [5.0, 5.0]}

    g_net = GeoGraph(gm.PROJ4_LATLONG, net_coords, data=net_edges)
    g_nodes = GeoGraph(gm.PROJ4_LATLONG, node_coords)
    
    g_project = g_net.project_onto(g_nodes, spherical_accuracy=True)

    g_net_xyz = GeoGraph(gm.PROJ4_LATLONG, 
                         g_net.lon_lat_to_cartesian_coords(),
                         data=net_edges)

    g_nodes_xyz = GeoGraph(gm.PROJ4_LATLONG, 
                           g_nodes.lon_lat_to_cartesian_coords())

    g_project_xyz = g_net_xyz.project_onto(g_nodes_xyz, spherical_accuracy=True)

    g_project_coords_ll = g_project_xyz.cartesian_to_lon_lat()

    def round_coords(coords, round_precision=8):
        return {i: tuple(map(lambda c: round(c, round_precision), coord))
               for i, coord in coords.items()}

    assert(round_coords(g_project_coords_ll) == round_coords(g_project.coords))
Ejemplo n.º 2
0
def simple_nodes_disjoint_grid():
    """
    return disjoint net plus nodes with fakes
    fakes are associated with disjoint subnets

    nodes by id (budget in parens)


           (5) 0-------1 (5)
               |       |
             +-+-+   +-+-+  <-- disjoint existing grid

    Useful for testing treating existing grid as single grid
    vs disjoint

    """
    # setup grid
    grid_coords = np.array([[-1.0, 0.0], [1.0, 0.0], [3.0, 0.0], [5.0, 0.0]])
    grid = GeoGraph(gm.PROJ4_FLAT_EARTH,
                    {'grid-' + str(n): c
                     for n, c in enumerate(grid_coords)})
    nx.set_node_attributes(grid, 'budget', {n: 0 for n in grid.nodes()})
    grid.add_edges_from([('grid-0', 'grid-1'), ('grid-2', 'grid-3')])

    # setup input nodes
    node_coords = np.array([[0.0, 1.0], [4.0, 1.0]])
    nodes = GeoGraph(gm.PROJ4_FLAT_EARTH, dict(enumerate(node_coords)))
    budget_values = [5, 5]
    nx.set_node_attributes(nodes, 'budget', dict(enumerate(budget_values)))

    fakes = [2, 3]
    return grid, nodes, fakes
Ejemplo n.º 3
0
def test_compose():

    """
    Ensure that GeoGraph.compose works correctly
    
    geo_left:       geo_right (no edges):

    0---1   2       0   1

    force_disjoint=True:

    0---1   2   3   4 

    force_disjoint=False:

    0---1   2
    
    Note that geo_right attributes take precedence over geo_left
    when merged
    """

    left_coords = [[0.0, 0.0], [0.1, 0.0], [0.2, 0.0]]
    left_edges = [(0, 1)]
    left_attrs = {0: {'name': 'left0'}, 
                  1: {'name': 'left1'},
                  2: {'name': 'left2'}}

    right_coords = [[0.0, 0.0], [0.1, 0.0]]
    right_attrs = {0: {'name': 'right0'}, 
                   1: {'name': 'right1'}}
 
    geo_left = GeoGraph(coords=dict(enumerate(left_coords)), data=left_edges)
    geo_left.node = copy.deepcopy(left_attrs)

    geo_right = GeoGraph(coords=dict(enumerate(right_coords)))
    geo_right.node = copy.deepcopy(right_attrs)

    geo_union = GeoGraph.compose(geo_left, geo_right, force_disjoint=False)
    union_attrs = copy.deepcopy(left_attrs)
    union_attrs.update(right_attrs)

    assert geo_union.nodes() == [0, 1, 2] \
           and geo_union.edges() == [(0, 1)] \
           and geo_union.node == union_attrs, \
           "Non-disjoint composition not correct"

    geo_union = GeoGraph.compose(geo_left, geo_right, force_disjoint=True)

    assert geo_union.nodes() == [0, 1, 2, 3, 4] \
           and geo_union.edges() == [(0, 1)] \
           and geo_union.coords == dict(enumerate(left_coords + right_coords)), \
           "Disjoint composition not correct"
Ejemplo n.º 4
0
def random_settlements(n):

    coords = np.random.uniform(size=(n, 2))

    # get all perm's of points (repetitions are ok here)
    points_left = np.tile(coords, (len(coords), 1))
    points_right = np.repeat(coords, len(coords), axis=0)
    point_pairs = np.concatenate(
        (points_left[:, np.newaxis], points_right[:, np.newaxis]), axis=1)
    all_dists = gm.spherical_distance_haversine(point_pairs)

    full_dist_matrix = all_dists.reshape(len(coords), len(coords))
    zero_indices = (np.array(range(len(coords))) * (len(coords) + 1))
    non_zero_dists = np.delete(all_dists, zero_indices).\
        reshape((len(coords), len(coords) - 1))

    # find all minimum distances
    # apply min over ranges of the dist array
    min_dists = np.min(non_zero_dists, axis=1)

    # assign same median budget to all nodes
    # outside a really degenerate case (all edges in line in shortest
    # distance order...)
    # this should ensure some "dead" nodes
    budget_vals = np.repeat(np.median(min_dists), len(coords))

    # build graph
    graph = GeoGraph(gm.PROJ4_FLAT_EARTH, dict(enumerate(coords)))
    nx.set_node_attributes(graph, 'budget', dict(enumerate(budget_vals)))

    return graph, full_dist_matrix
Ejemplo n.º 5
0
def test_merge_nearby_nodes():
    """                       
         --2                    2
        /                      /
      --                      /
     /                       /
    1                       /
     \                     /
      0-----------5   =>  0------------5
     / 
    3 
    |
    4

    """

    coords = [[ 0,  0],
              [-1,  1],
              [ 2,  6],
              [-1, -1],
              [-1, -2],
              [ 5,  0]]

    edges = [(0, 1), (1, 2), (0, 3), (3, 4), (0, 5)]

    geo = GeoGraph(coords=dict(enumerate(coords)), data=edges)
    geo.merge_nearby_nodes(radius=2.0)
    assert geo.edges() == [(0, 2), (0, 5)],\
        "nodes were not merged correctly"
Ejemplo n.º 6
0
    def _get_demand_nodes(self, input_proj=None):
        """
        Converts the dataset_store metrics records to a GeoGraph of nodes
        (prereq:  _run_metric_model to populate store)

        Args:
            input_proj:  projection of demand node coordinates

        Returns:
            GeoGraph:  demand nodes as GeoGraph
        """

        coords = [
            node.getCommonCoordinates() for node in self.store.cycleNodes()
        ]

        # set default projection
        if not input_proj:
            input_proj = self._get_default_proj4(coords)

        # NOTE:  Although dataset_store nodes id sequence starts at 1
        # leave the GeoGraph ids 0 based because there are places in the
        # network algorithm that assume 0 based coords
        # This will be realigned later
        coords_dict = {i: coord for i, coord in enumerate(coords)}
        budget_dict = {
            i: node.metric
            for i, node in enumerate(self.store.cycleNodes())
        }

        geo_nodes = GeoGraph(input_proj, coords_dict)
        nx.set_node_attributes(geo_nodes, 'budget', budget_dict)
        return geo_nodes
Ejemplo n.º 7
0
def read_json_geograph(json_file):
    """
    Args:
        json_file: path to json file as string or file 

    Assumes the json is in networkx link-node format
    """

    js = json.load(json_file)
    g = json_graph.node_link_graph(js)

    assert all([nd.has_key('coords') for nd in g.node.values()]),\
           "json node-link graph must have nodes with coords for GeoGraph"

    # get coords
    coords = [v['coords'] for v in g.node.values()]

    # set default projection
    input_proj = ""
    if gm.is_in_lon_lat(coords):
        input_proj = gm.PROJ4_LATLONG
    else:
        input_proj = gm.PROJ4_FLAT_EARTH

    coords_dict = {k: v['coords'] for k, v in g.node.items()}
    # now get rid of 'coords' key,val for each node
    for node in g.node.values():
        node.pop('coords', None)

    geo_nodes = GeoGraph(srs=input_proj, coords=coords_dict, data=g)
    return geo_nodes
Ejemplo n.º 8
0
def read_csv_geograph(csv_file, x_column="X", y_column="Y"):
    """
    load nodes csv into GeoGraph (nodes only for now)

    Args:
        csv_file:  nodal metrics csv file as string or file
        x_column, y_column:  col names to take x, y from

    Returns:
        GeoGraph of nodes including all attributes from input csv
    """

    input_proj = read_csv_projection(csv_file)
    header_row = 1 if input_proj else 0

    # read in the csv
    # NOTE:  Convert x,y via float cast to preserve precision of input
    # go back to beginning 1st
    csv_file.seek(0)
    metrics = pd.read_csv(csv_file,
                          header=header_row,
                          converters={
                              x_column: float,
                              y_column: float
                          })

    coord_cols = [x_column, y_column]
    assert all([hasattr(metrics, col) for col in coord_cols]), \
        "metrics file does not contain coordinate columns {}, {}".\
        format(x_column, y_column)

    # Stack the coords
    coords = np.column_stack(map(metrics.get, coord_cols))

    # set default projection
    if not input_proj:
        if gm.is_in_lon_lat(coords):
            input_proj = gm.PROJ4_LATLONG
        else:
            input_proj = gm.PROJ4_FLAT_EARTH

    coords_dict = dict(enumerate(coords))

    geo_nodes = GeoGraph(input_proj, coords_dict)

    # populate the rest of the attributes
    metrics_no_coords = metrics[metrics.columns.difference(coord_cols)]
    for row in metrics_no_coords.iterrows():
        index = row[0]
        attrs = row[1].to_dict()
        geo_nodes.node[index] = attrs

    return geo_nodes
Ejemplo n.º 9
0
def nodes_plus_existing_grid():
    """
    return net plus existing grid with certain properties for testing
    nodes by id (budget in parens)

           1 (3)
            \
             \
               0 (2)
               |       2 (5)
               |       |
     +-+-+-+-+-+-+-+-+-+-+  <-- existing grid

    """

    # setup grid
    grid_coords = np.array([[-5.0, 0.0], [5.0, 0.0]])
    grid = GeoGraph(gm.PROJ4_FLAT_EARTH,
                    {'grid-' + str(n): c
                     for n, c in enumerate(grid_coords)})
    nx.set_node_attributes(grid, 'budget', {n: 0 for n in grid.nodes()})
    grid.add_edges_from([('grid-0', 'grid-1')])

    # setup input nodes
    node_coords = np.array([[0.0, 2.0], [-1.0, 4.0], [4.0, 1.0]])
    nodes = GeoGraph(gm.PROJ4_FLAT_EARTH, dict(enumerate(node_coords)))
    budget_values = [2, 3, 5]
    nx.set_node_attributes(nodes, 'budget', dict(enumerate(budget_values)))

    # setup resulting edges when creating msf through the sequence of nodes
    # Note: Fake nodes integer label begins at the total number of nodes + 1
    # Hence why the fake node in the test is incremented by one on each
    # iteration
    edges_at_iteration = [
        [(0, 1)],  # 0 connects to fake_node
        [(0, 2)],  # 0, 1 can't connect
        [(0, 3), (2, 5), (1, 0)]
    ]  # 2 connects grid

    return grid, nodes, edges_at_iteration
Ejemplo n.º 10
0
def network_nodes_projections():
    """
    Create a network and node graph to be merged, and
    the expected result of project_onto for testing

    rough picture of this test

              4
             /
            /
           /
          /
         /
        /      2
       /       |
      /     6  | 8
     /   5 0---1
    3            7

    nodes 5,6,7,8 should be projected onto graph path (0,1,2)
    graph path (3,4) is meant to test whether a long segment whose
    bbox overlaps all nodes interferes with the projection
    (it had in the past)
    """

    net_coords = [[0.0, 0.0], [3.0, 0.0], [3.0, 3.0],
                  [-6.0, -1.0], [6.0, 11.0]]
    net_edges = [(0, 1), (1, 2), (3, 4)]
    node_coords = {5: [-1.0, 0.0], 6: [1.0, 1.0],
                   7: [4.0, -1.0], 8: [4.0, 1.0]}

    projected_coords = {5: [0.0, 0.0], 6: [1.0, 0.0],
                        7: [3.0, 0.0], 8: [3.0, 1.0]}

    g_net = GeoGraph(gm.PROJ4_FLAT_EARTH, dict(enumerate(net_coords)), data=net_edges)
    g_nodes = GeoGraph(gm.PROJ4_FLAT_EARTH, node_coords)

    return g_net, g_nodes, projected_coords
Ejemplo n.º 11
0
def read_geojson_geograph(geojson_path):
    """
    Load GeoGraph from geojson (as undirected)

    See:  docs/geograph_geojson.md for format details

    Args:
        geojson_path:  Path to geojson

    Returns:
        geograph:  GeoGraph object
    """

    geojson = json.load(geojson_path)
    dict_getter = nested_dict_getter()

    # build GeoGraph from a plain-old networkx graph
    g = nx.Graph()

    # Only add crs if it's explicitly set in crs.properties.name
    crs = dict_getter(geojson, ['crs', 'properties', 'name'])
    if crs:
        try:
            prj.Proj(crs)
        except Exception as e:
            raise SpatialReferenceInvalidException(
                "Spatial reference must comply with proj4, got {}" % crs)

    # TODO:  Apply geojson schema validation
    features = geojson['features']

    # Currently this separates nodes and coordinates due to structure of
    # GeoGraph.  This may change to allow Nodes and Edges to have distinct
    # Geometry.
    nodes, coords = geojson_get_nodes(features)
    g.add_nodes_from(nodes)

    edges = geojson_get_edges(features)
    g.add_edges_from(edges)

    if crs is None and gm.is_in_lon_lat(coords.values()):
        crs = gm.PROJ4_LATLONG

    if crs is None:
        warnings.warn(
            "Spatial Reference could not be set for {}".format(geojson_path))

    # TODO:  More srs/projection validation?
    return GeoGraph(srs=crs, coords=coords, data=g)
Ejemplo n.º 12
0
def graph_with_dead_node():

    # a 'dead' node is one with insufficient mvMax to connect
    # to it's nearest neighbor (c in graph below)

    # a(2) - b(10) ---- c(2) ----- c(10)
    #      1         4          4

    mv_max_values = [2, 10, 2, 10]
    coords = np.array([[-1.0, 0.0], [0.0, 0.0], [4.0, 0.0], [8.0, 0.0]])
    coords_dict = dict(enumerate(coords))
    graph = GeoGraph(coords=coords_dict)

    nx.set_node_attributes(graph, 'budget', dict(enumerate(mv_max_values)))

    return graph
Ejemplo n.º 13
0
def generate_mst(coords):
    """ 
    Generate a min spanning tree based on coordinate 
    distances
    """
    input_proj = gm.PROJ4_LATLONG
    if gm.is_in_lon_lat(coords):
        input_proj = gm.PROJ4_LATLONG
    else:
        input_proj = gm.PROJ4_FLAT_EARTH

    node_dict = dict(enumerate(coords))

    geo_nodes = GeoGraph(input_proj, node_dict)
    geo_full = geo_nodes.get_connected_weighted_graph()
    geo_mst = nx.minimum_spanning_tree(geo_full)
    geo_nodes.add_edges_from(geo_mst.edges(data=True))
    return geo_nodes
Ejemplo n.º 14
0
def graph_high_mvmax_long_edge():

    # This graph has an edge between components such that
    # if the min FNN is selected incorrectly, it will
    # produce a non minimal graph (this is just one case to test)
    # All vertices have sufficient MV

    # a(10) --- b(10) -------- c(10) --- d(10)
    #        3           7            3

    mv_max_values = [10, 10, 10, 10]
    coords = np.array([[0.0, 0.0], [3.0, 0.0], [10.0, 0.0], [13.0, 0.0]])
    coords_dict = dict(enumerate(coords))

    graph = GeoGraph(coords=coords_dict)
    nx.set_node_attributes(graph,   'budget',   dict(enumerate(mv_max_values)))

    return graph
Ejemplo n.º 15
0
def test_load_write_json():
    """
    ensure that reading/writing js 'node-link' format works
    """

    os.mkdir(os.path.join('test', 'tmp'))
    node_dict = {0: [0,0], 1: [0,1], 2: [1,0], 3: [1,1]}
    g = GeoGraph(gm.PROJ4_LATLONG, node_dict)
    g.add_edges_from([(0,1),(1,2),(2,3)])
    json_file_path = os.path.join('test', 'tmp', 'g.json')
    nio.write_json(g, open(json_file_path, 'w'))

    g2 = nio.read_json_geograph(json_file_path)
    os.remove(json_file_path)
    os.rmdir(os.path.join('test', 'tmp'))
    assert nx.is_isomorphic(g, g2,
                            node_match=operator.eq,
                            edge_match=operator.eq),\
           "expected written and read graphs to match"
Ejemplo n.º 16
0
def grid_and_non_grid():
    """
    return networkplan GeoGraph with grid and non-grid components

               0       2
               |       |
             +-6-+     1   3-4-5
              (inf)

    where node 3 is a fake node connecting node 0 to the grid

    """
    node_coords = np.array([[0.0, 1.0], [4.0, 0.0], [4.0, 1.0], [5.0, 0.0],
                            [6.0, 0.0], [7.0, 0.0], [0.0, 0.0]])

    grid = GeoGraph(gm.PROJ4_FLAT_EARTH, dict(enumerate(node_coords)))
    budget_values = [5, 5, 5, 5, 5, 5, np.inf]
    nx.set_node_attributes(grid, 'budget', dict(enumerate(budget_values)))
    grid.add_edges_from([(0, 6), (1, 2), (3, 4), (4, 5)])

    return grid
Ejemplo n.º 17
0
def read_shp_geograph(shp, simplify=True):
    """ 
    loads a shapefile into a networkx based GeoGraph object

    Args:
        shp: string or ogr.DataSource
            string path name to shapefile or pre-opened ogr.DataSource 


        simplify:  Only retain start/end nodes of multi-segment lines

    Returns:
        geograph:  GeoGraph

    """

    # Note:  There's already a nx.read_shp which we've contributed to and
    #        may want to just adopt over our own read_shp_networkx_graph
    g = read_shp_networkx_graph(shp, simplify=simplify, geom_attrs=False)
    coords = dict(enumerate(g.nodes()))

    # needed for SRS
    layer = shp.GetLayer()
    spatial_ref = layer.GetSpatialRef()
    proj4 = None
    if not spatial_ref:
        if gm.is_in_lon_lat(coords):
            proj4 = gm.PROJ4_LATLONG
        else:
            warnings.warn("Spatial Reference could not be set for {}".format(
                shp.GetName()))

    else:
        proj4 = spatial_ref.ExportToProj4()

    g = nx.convert_node_labels_to_integers(g)

    return GeoGraph(srs=proj4, coords=coords, data=g)
Ejemplo n.º 18
0
def merge_network_and_nodes(network, demand_nodes,
                            single_network=True, spherical_accuracy=False):
    """
    merge the network and nodes GeoGraphs to set up the Graph, UnionFind
    (DisjoinSet), and RTree datastructures for use in network algorithms

    Args:
        network:  graph representing existing network
            (assumes node ids don't conflict with net (demand) nodes)
        demand_nodes:  graph of nodes representing demand
        single_network:  whether subgraphs of network are unioned into
            a single network
        spherical_accuracy:  Whether to connect nodes to network on a sphere

    Returns:
        graph:  graph with demand nodes and their nearest nodes to the
            existing network (i.e. 'fake' nodes)
        subgraphs:  UnionFind datastructure populated with fake nodes and
            associated with the appropriate connected component or the entire
            subgraph (depending on ``single_subgraph`` param)
        rtree:  spatial index populated with the edges from the
            existing network
    """

    # project demand nodes onto network
    rtree = network.get_rtree_index()
    grid_with_fakes = network.project_onto(demand_nodes, rtree_index=rtree,
                                           spherical_accuracy=spherical_accuracy)

    # get only the fake nodes and the associated network edges
    demand_node_set = set(demand_nodes.nodes())
    net_plus_demand = set(network.nodes()).union(demand_node_set)
    fakes = set(grid_with_fakes.nodes()) - net_plus_demand

    def get_fake_edge(node):
        """
        fake node should only have 2 neighbors from the existing network
        that is the nearest edge
        """
        return tuple(set(grid_with_fakes.neighbors(node)) - demand_node_set)

    edge_fakes = [(get_fake_edge(fake), fake) for fake in fakes]

    # Init the DisjointSet
    subgraphs = UnionFind()

    assert len(network.nodes()) > 1, \
        "network must have more than 1 node"

    if single_network:
        # just union all nodes to a single parent
        nodes = network.nodes()
        # add parent
        parent = nodes[0]
        subgraphs.add_component(parent, budget=network.node[parent]['budget'])
        for node in nodes[1:]:
            subgraphs.add_component(node, budget=network.node[node]['budget'])
            # The existing grid nodes are on the grid (so distance is 0)
            subgraphs.union(parent, node, 0)
    else:
        # Build the subnet components
        # Get the network components to init budget centers
        subnets = nx.connected_components(network)

        for sub in subnets:
            # union all nodes to parent of subnet
            sub_list = list(sub)
            parent = sub_list[0]
            subgraphs.add_component(parent,
                                    budget=network.node[parent]['budget'])
            # Merge remaining nodes with component
            for node in sub_list[1:]:
                subgraphs.add_component(node,
                                        budget=network.node[node]['budget'])
                # The existing grid nodes are on the grid (so distance is 0)
                subgraphs.union(parent, node, 0)

    # setup merged graph to be populated with fake nodes
    merged = GeoGraph(demand_nodes.srs, demand_nodes.coords, data=demand_nodes)
    # merge fakes in
    for ((u, v), fake) in edge_fakes:

        # Make sure something wonky isn't going on
        assert(subgraphs[u] == subgraphs[v])

        # Add the fake node to the big net
        # NOTE:  fake nodes always have np.inf budget
        merged.add_node(fake, budget=np.inf)
        merged.coords[fake] = grid_with_fakes.coords[fake]

        # Merge the fake node with the grid subgraph
        subgraphs.add_component(fake, budget=np.inf)
        subgraphs.union(fake, u, 0)

    return merged, subgraphs, rtree
Ejemplo n.º 19
0
def dataset_store_to_geograph(dataset_store):
    """
    convenience function for converting a network stored in a dataset_store
    into a GeoGraph

    Args:
        dataset_store containing a network

    Returns:
        GeoGraph representation of dataset_store network

    TODO: determine projection from dataset_store?
    """


    all_nodes = list(dataset_store.cycleNodes()) + \
        list(dataset_store.cycleNodes(isFake=True))

    # nodes in output GeoGraph are id'd from 0 to n (via enumerate)
    np_to_nx_id = {node.id: i for i, node in enumerate(all_nodes)}

    coords = [node.getCommonCoordinates() for node in all_nodes]
    coords_dict = dict(enumerate(coords))

    G = GeoGraph(coords=coords_dict)

    # only set population, system and budget for now
    # TODO:  Do we need all from the output?
    for i, node in enumerate(all_nodes):
        if not node.is_fake:
            properties = {
                'budget': node.metric,
                'population': node.output['demographics']['population count'],
                'system': node.output['metric']['system']
            }
            G.node[i] = properties

    def seg_to_nx_ids(seg):
        """
        Return the networkx segment ids
        """
        return (np_to_nx_id[seg.node1_id], np_to_nx_id[seg.node2_id])

    edges = [
        seg_to_nx_ids(s)
        for s in dataset_store.cycleSegments(is_existing=False)
    ]
    edge_weights = {
        seg_to_nx_ids(s): s.weight
        for s in dataset_store.cycleSegments(is_existing=False)
    }
    edge_is_existing = {
        seg_to_nx_ids(s): s.is_existing
        for s in dataset_store.cycleSegments(is_existing=False)
    }
    edge_subnet_id = {
        seg_to_nx_ids(s): s.subnet_id
        for s in dataset_store.cycleSegments(is_existing=False)
    }
    G.add_edges_from(edges)
    nx.set_edge_attributes(G, 'weight', edge_weights)
    nx.set_edge_attributes(G, 'is_existing', edge_is_existing)
    nx.set_edge_attributes(G, 'subnet_id', edge_subnet_id)

    return G
Ejemplo n.º 20
0
def build_network(demand_nodes,
                  existing=None,
                  min_node_count=2,
                  single_network=True,
                  network_algorithm='mod_boruvka',
                  spherical_accuracy=False,
                  one_based=False):
    """
    project demand nodes onto optional existing supply network and
    return the 'optimized' network

    Args:
        demand_nodes:  GeoGraph of demand nodes
        existing:  GeoGraph of existing grid (assumes node ids
            don't conflict with demand_nodes
        min_node_count:  minimum number of nodes allowed in a subgraph
            of the result
        network_algorithm:  Algorithm from ALGOS to run
        spherical_accuracy:  Whether to connect nodes to network on a sphere
        one_based:  Whether result GeoGraph's nodes should be one_based
            (if not, they are 0 based)

    Returns:
        msf: GeoGraph of minimum spanning forest proposed by the chosen
            network algorithm
        existing: The existing grid GeoGraph (None if it doesn't exist)

    """
    geo_graph = subgraphs = rtree = None

    if existing:
        log.info("merging network and nodes")
        geo_graph, subgraphs, rtree = \
            merge_network_and_nodes(existing, demand_nodes,
                                    single_network=single_network,
                                    spherical_accuracy=spherical_accuracy)
    else:
        geo_graph = demand_nodes

    log.info("running {} on {} demand nodes and {} total nodes".format(
              network_algorithm, len(demand_nodes), len(geo_graph)))

    # now run the selected algorithm
    network_algo = NetworkerRunner.ALGOS[network_algorithm]
    result_geo_graph = network_algo(geo_graph, subgraphs=subgraphs,
                                    rtree=rtree)

    filtered_graph = filter_min_node_subnetworks(result_geo_graph,
                                                 min_node_count)

    # map coords back to geograph
    # NOTE:  explicit relabel to int as somewhere in filtering above, some
    # node ids are set to numpy types which screws up comparisons to tuples
    # in write op
    # NOTE:  relabeling nodes in-place here drops node attributes for some
    #   reason so create a copy for now
    def id_label(i):
        id = int(i+1) if one_based else int(i)
        return id

    msf = GeoGraph(result_geo_graph.srs)
    if filtered_graph:
        coords = {id_label(i): result_geo_graph.coords[i]
                  for i in filtered_graph}
        relabeled = nx.relabel_nodes(filtered_graph, {i: id_label(i)
                                                      for i in filtered_graph},
                                     copy=True)
        msf = GeoGraph(result_geo_graph.srs, coords=coords, data=relabeled)

    log.info("filtered result has {} nodes and {} edges".format(
        len(msf.nodes()), len(msf.edges())))
    return msf
Ejemplo n.º 21
0
def nodes_plus_grid():
    """
    Return:  nodes as graph and grid as UnionFind/Rtree combo

    This example input demonstrates the "more" optimal nature
    of mod_boruvka vs mod_kruskal.

                          2(10)
                           |
            1(4)           |
  sqrt(5){ /|              |
          / |              |
         /  | }3           | } 5
     (2)0   |              |
      1{|   |              |
    +-+-3-+-4-+-+-+-+-+-+-+5-+-+-+  <-- existing grid


    In this case, all nodes will be connected via either algorithm,
    but the graph produced by mod_kruskal will have edge (4,1) whereas
    mod_boruvka will produce a graph with edge (0,1).

    Therefore, the mod_boruvka graph is more optimal.
    """

    mv_max_values = [2, 4, 10]
    coords = np.array([[0.0, 1.0], [1.0, 3.0], [10.0, 5.0]])
    coords_dict = dict(enumerate(coords))
    nodes = GeoGraph(gm.PROJ4_FLAT_EARTH, coords=coords_dict)

    nx.set_node_attributes(nodes, 'budget', dict(enumerate(mv_max_values)))

    grid_coords = np.array([[-5.0, 0.0], [15.0, 0.0]])
    grid = GeoGraph(gm.PROJ4_FLAT_EARTH,
                    {'grid-' + str(n): c
                     for n, c in enumerate(grid_coords)})
    nx.set_node_attributes(grid, 'budget', {n: 0 for n in grid.nodes()})
    grid.add_edges_from([('grid-0', 'grid-1')])

    # now find projections onto grid
    rtree = grid.get_rtree_index()
    projected = grid.project_onto(nodes, rtree_index=rtree)
    projected.remove_nodes_from(grid)
    projected.remove_nodes_from(nodes)

    # populate disjoint set of subgraphs
    subgraphs = UnionFind()
    # only one connected component, so just associate all nodes
    # with first node of grid
    parent = grid.nodes()[0]
    subgraphs.add_component(parent, budget=grid.node[parent]['budget'])
    for node in grid.nodes()[1:]:
        subgraphs.add_component(node, budget=grid.node[node]['budget'])
        subgraphs.union(parent, node, 0)

    # and the projected "fake" nodes
    for node in projected.nodes():
        subgraphs.add_component(node, budget=np.inf)
        subgraphs.union(parent, node, 0)

    # add projected nodes to node set
    nodes.add_nodes_from(projected, budget=np.inf)
    # merge coords
    nodes.coords = dict(nodes.coords, **projected.coords)

    return nodes, subgraphs, rtree