Ejemplo n.º 1
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.bn1 = L.BatchNorm2d(planes)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.bn2 = L.BatchNorm2d(planes)
     self.downsample = downsample
     self.stride = stride
Ejemplo n.º 2
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = conv1x1(inplanes, planes)
     self.bn1 = L.BatchNorm2d(planes)
     self.conv2 = conv3x3(planes, planes, stride)
     self.bn2 = L.BatchNorm2d(planes)
     self.conv3 = conv1x1(planes, planes * self.expansion)
     self.bn3 = L.BatchNorm2d(planes * self.expansion)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Ejemplo n.º 3
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                L.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
Ejemplo n.º 4
0
 def __init__(self, block, layers, num_classes=1000):
     super(ResNet, self).__init__()
     self.inplanes = 64
     self.conv1 = L.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
     self.bn1 = L.BatchNorm2d(64)
     self.relu = nn.ReLU(inplace=True)
     self.maxpool = nn.MaxPool2d(
         kernel_size=3, stride=2, padding=1, return_indices=True,
     )
     self.layer1 = self._make_layer(block, 64, layers[0])
     self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
     self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
     self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
     self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
     self.fc = nn.Linear(512 * block.expansion, num_classes)