def set_model(self, model=None, load_path=None, use_most_recent=True): """ :param model: Can be directly a pytorch Module. Otherwise, will use the default model (Bionet) EDIT: Changed to UNet :param load_path: Path indicating from where to load a pretrained set of weights. Can point to a folder containing multiples files (see argument below) or directly to a .pth file If None, the model is initialized accordingly to the default policy :param use_most_recent: If load_path points to a folder and not a file, the loading function will choose the most recent file in the folder (usually, the last saved during the training and therefore 'maybe' the best). :return: """ if model is None: model = UNet(checkpoint=self.config.hp.save_point, config=self.config.model) if load_path is not None: model.load(load_path, load_most_recent=use_most_recent) self.model = model.to(self.device) self.setup_optims() if self.use_apex: self.model, self.optim = self.amp.initialize(self.model, self.optim, opt_level="O1", loss_scale="dynamic") if self.multi_gpu: self.model = MyDataParallel(self.model, device_ids=self.config.extern.gpu)
def get_unet(pretrain_unet_path): unet = UNet(3, depth=5, in_channels=3) print(unet) print('load uent with depth = 5 and downsampling will be performed for 4 times!!') unet.load_state_dict(weight_to_cpu(pretrain_unet_path)) print('load pretrained unet!') return unet
def main(): model = UNet().to(device) criterion = BinaryDiceLoss().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=lr) train_dataset = ImageDataset(split='train') train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=train_batch_size, num_workers=num_workers, shuffle=True, pin_memory=True) valid_dataset = ImageDataset(split='valid') valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=valid_batch_size, num_workers=num_workers, shuffle=False, pin_memory=True) for epoch in range(epochs): train(epoch, model, train_loader, criterion, optimizer) valid(epoch, model, valid_loader, criterion) save_checkpoint( { 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, save_file='pretrained/unet.pth.tar', is_best=False)
def __init__(self, prefix, epoch, data_dir, saved_path): self.prefix = prefix self.data = data_dir self.epoch = epoch self.batch_size = 32 self.power = 2 self.saved_path = saved_path self.dataloader = self.get_dataloader() self.config = self.load_config() self.unet = UNet(3, depth=self.config['u_depth'], in_channels=3) print(self.unet) print( 'load uent with depth %d and downsampling will be performed for %d times!!' % (self.config['u_depth'], self.config['u_depth'] - 1)) self.unet.load_state_dict( weight_to_cpu('%s/epoch_%s/g.pkl' % (self.prefix, self.epoch))) print('load pretrained unet') self.d = get_discriminator(self.config['gan_type'], self.config['d_depth'], self.config['dowmsampling']) self.d.load_state_dict( weight_to_cpu('%s/epoch_%s/d.pkl' % (self.prefix, self.epoch))) print('load pretrained d')
def get_unet(self): unet = UNet(3, depth=self.u_depth, in_channels=3) print(unet) print( 'load uent with depth %d and downsampling will be performed for %d times!!' % (self.u_depth, self.u_depth - 1)) if self.is_pretrained_unet: unet.load_state_dict(weight_to_cpu(self.pretrain_unet_path)) print('load pretrained unet') return unet
class BaseMonoDepthEstimator(nn.Module): def __init__(self, inchans=3,nframes=3): super(BaseMonoDepthEstimator, self).__init__() # 3 parameters for translation and 3 for rotation self.inchans = inchans self.ego_vector_dim = 6 self.nframes = nframes self.ego_prediction_size = self.ego_vector_dim * (self.nframes -1) # Depth network - encoder-decoder combo self.unet = UNet(3,1) self.final_conv_layer0 = nn.Conv2d(1, 1, 1, stride=1, padding=0) self.final_conv_layer1 = nn.Conv2d(1, 1, 1, stride=1, padding=0) # 2) an ego motion network - use the encoder from (1) # and append extra cnns self.ego_motion_cnn = ConvolutionStack(self.unet.feature_channels()*nframes) self.ego_motion_cnn.append(128,3,2) self.ego_motion_cnn.append(64,3,2) self.ego_motion_cnn.append(self.ego_prediction_size,1,1) def forward(self, x): # for each frame, run through the depth and ego motion networks # assume input is BxKxCxWxH assert len(x.shape)==5, 'Input must be BxKxCxWxH!' assert x.shape[1]==self.nframes, 'Input sequence length must match nframes!, expected {}, found {}'.format(self.nframes, x.shape[1]) batch_size = x.shape[0] unstacked_frames = torch.chunk(x,self.nframes,1) unstacked_frames = [torch.squeeze(y,1) for y in unstacked_frames] encoded_features = [] depth_maps = [] # first predict depth in all frames for frame in unstacked_frames: depth_map, features = self.unet.forward(frame) encoded_features.append(features) # depth_map = self.final_conv_layer0(depth_map) # depth_map = self.final_conv_layer1(depth_map) depth_map = F.sigmoid(depth_map.squeeze(1)) depth_maps.append(depth_map) # next predict ego_motion, stack feature maps stacked_features = torch.cat(encoded_features,1) ego_motion_features = self.ego_motion_cnn(stacked_features) # reduce mean along the spatial dimensions ego_vectors = torch.mean(ego_motion_features,[2,3]).reshape(batch_size,self.nframes-1,-1) depth_maps = torch.stack(depth_maps,1) # frames, ego_vectors, and depth_maps return x, ego_vectors, depth_maps
def model_builder(): classifier = resnet18(is_ptrtrained=False) print('use resnet18') auto_encoder = UNet(3, depth=5, in_channels=3) auto_encoder.load_state_dict(weight_to_cpu(args.pretrain_unet)) print('load pretrained unet!') model = Locator(aer=auto_encoder, classifier=classifier) if args.cuda: model = DataParallel(model).cuda() else: raise ValueError('there is no gpu') return model
def __init__(self, config): super().__init__() self.config = config self.gpuid = config['gpuid'] self.unet = UNet(config) self.keypoint = Keypoint(config) self.softmax_matcher = SoftmaxMatcher(config) self.svd = SVD(config)
def __init__(self, inchans=3,nframes=3): super(BaseMonoDepthEstimator, self).__init__() # 3 parameters for translation and 3 for rotation self.inchans = inchans self.ego_vector_dim = 6 self.nframes = nframes self.ego_prediction_size = self.ego_vector_dim * (self.nframes -1) # Depth network - encoder-decoder combo self.unet = UNet(3,1) self.final_conv_layer0 = nn.Conv2d(1, 1, 1, stride=1, padding=0) self.final_conv_layer1 = nn.Conv2d(1, 1, 1, stride=1, padding=0) # 2) an ego motion network - use the encoder from (1) # and append extra cnns self.ego_motion_cnn = ConvolutionStack(self.unet.feature_channels()*nframes) self.ego_motion_cnn.append(128,3,2) self.ego_motion_cnn.append(64,3,2) self.ego_motion_cnn.append(self.ego_prediction_size,1,1)
def __init__(self, config): super().__init__() self.config = config self.gpuid = config['gpuid'] self.unet = UNet(config) self.keypoint = Keypoint(config) self.softmax_matcher = SoftmaxRefMatcher(config) self.solver = SteamSolver(config) self.patch_size = config['networks']['keypoint_block']['patch_size'] self.patch_mean_thres = config['steam']['patch_mean_thres']
def __init__(self, device, num_steps, z_dimension=8): # in and out channels for the generator: a, b = 2, 3 G = Generator(a, b) if not USE_UNET else UNet(a, b) E = ResNetEncoder(b, z_dimension) # conditional discriminators D1 = MultiScaleDiscriminator(a + b - 1) D2 = MultiScaleDiscriminator(a + b - 1) def weights_init(m): if isinstance(m, (nn.Conv2d, nn.Linear, nn.ConvTranspose2d)): init.xavier_normal_(m.weight, gain=0.02) if m.bias is not None: init.zeros_(m.bias) elif isinstance(m, nn.InstanceNorm2d) and m.affine: init.ones_(m.weight) init.zeros_(m.bias) self.G = G.apply(weights_init).to(device) self.E = E.apply(weights_init).to(device) self.D1 = D1.apply(weights_init).to(device) self.D2 = D2.apply(weights_init).to(device) params = { 'lr': 4e-4, 'betas': (0.5, 0.999), 'weight_decay': 1e-8 } generator_groups = [ {'params': [p for n, p in self.G.named_parameters() if 'mapping' not in n]}, {'params': self.G.mapping.parameters(), 'lr': 4e-5} ] self.optimizer = { 'G': optim.Adam(generator_groups, **params), 'E': optim.Adam(self.E.parameters(), **params), 'D1': optim.Adam(self.D1.parameters(), **params), 'D2': optim.Adam(self.D2.parameters(), **params) } def lambda_rule(i): decay = num_steps // 2 m = 1.0 if i < decay else 1.0 - (i - decay) / decay return max(m, 0.0) self.schedulers = [] for o in self.optimizer.values(): self.schedulers.append(LambdaLR(o, lr_lambda=lambda_rule)) self.gan_loss = LSGAN() self.z_dimension = z_dimension self.device = device
def main(): global args, logger args = parser.parse_args() # logger = Logger(add_prefix(args.prefix, 'logs')) set_prefix(args.prefix, __file__) model = UNet(3, depth=5, in_channels=3) print(model) print('load unet with depth=5') if args.cuda: model = DataParallel(model).cuda() else: raise RuntimeError('there is no gpu') criterion = nn.L1Loss(reduce=False).cuda() print('use l1_loss') optimizer = optim.Adam(model.parameters(), lr=args.lr) # accelerate the speed of training cudnn.benchmark = True data_loader = get_dataloader() # class_names=['LESION', 'NORMAL'] # class_names = data_loader.dataset.class_names # print(class_names) since = time.time() print('-' * 10) for epoch in range(1, args.epochs + 1): train(data_loader, model, optimizer, criterion, epoch) if epoch % 40 == 0: validate(model, epoch, data_loader) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) validate(model, args.epochs, data_loader) # save model parameter torch.save(model.state_dict(), add_prefix(args.prefix, 'identical_mapping.pkl')) # save running parameter setting to json write(vars(args), add_prefix(args.prefix, 'paras.txt'))
def net_factory(net_type="unet", in_chns=1, class_num=3): if net_type == "unet": net = UNet(in_chns=in_chns, class_num=class_num).cuda() elif net_type == "unet_ds": net = UNet_DS(in_chns=in_chns, class_num=class_num).cuda() elif net_type == "efficient_unet": net = Effi_UNet('efficientnet-b3', encoder_weights='imagenet', in_channels=in_chns, classes=class_num).cuda() elif net_type == "pnet": net = PNet2D(in_chns, class_num, 64, [1, 2, 4, 8, 16]).cuda() else: net = None return net
def test_easy_dr(): normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) model = UNet(3, depth=3, in_channels=3) train_dir = '../data/gan/normal' train_dataset = EasyDR(data_dir=train_dir, pre_transform=None, post_transform=transforms.Compose([ transforms.ToTensor(), normalize ]), ) train_loader = DataLoader(dataset=train_dataset, batch_size=15, shuffle=False, num_workers=2, pin_memory=False) for idx, (inputs, target, image_names, weight) in enumerate(train_loader): inputs = Variable(inputs) target = Variable(target) result = model(inputs) print(image_names) break
def train(config): # rng rng = np.random.RandomState(config["seed"]) torch.cuda.manual_seed(config["seed"]) torch.cuda.manual_seed_all(config["seed"]) # occupy occ = Occupier() if config["occupy"]: occ.occupy() # Compute input shape c = UNet.get_optimal_shape(output_shape_lower_bound=config["output_size"], steps=config["num_unet_steps"], num_convs=config["num_unet_convs"]) input_size = [int(ci) for ci in c["input"]] config['margin'] = np.asarray(input_size) - np.asarray( config["output_size"]) # m = np.asarray(input_size) - np.asarray(config["output_size"]) # if len(np.unique(m)) == 1: # config["margin"] = m[0] # else: # raise RuntimeError("Should never be here?") if len(np.unique(config["margin"])) > 1: raise RuntimeError("Beware: this might not work?") data = Data(config) # writer writer = SummaryWriter(log_dir="output/logs/" + config["force_hash"]) board = { 'dataset': data.loss_label, 'loss': config['loss'], 'writer': writer, } # Save config file, for reference os.system('cp {} {}/{}'.format(config["config_filename"], config["output"], config["config_filename"].split('/')[-1])) fn = config["output"] + "/config.h5" print("Storing config file: '{}'".format(fn)) dd.io.save(fn, config) if config["model"] == "UNet": print("Instantiating UNet") model = UNet( steps=config["num_unet_steps"], num_input_channels=data.num_channels, first_layer_channels=config["num_unet_filters"], num_classes=data.num_classes, num_convs=config["num_unet_convs"], output_size=config["output_size"], pooling=config["pooling"], activation=config["activation"], use_dropout=config["use_dropout"], use_batchnorm=config["use_batchnorm"], init_type=config["init_type"], final_unit=config["final_unit"], ) # Need to overwrite this if model.is_3d: config["input_size"] = model.input_size else: config["input_size"] = [model.input_size[1], model.input_size[2]] # config["margin"] = model.margin print("UNet -> Input size: {}. Output size: {}".format( config["input_size"], config["output_size"])) else: raise RuntimeError("Unknown model") model.cuda() # Sanity check for j in range(len(data.train_images_optim)): s = data.train_images_optim[j].shape for i in range(len(s) - 1): if model.input_size[i] > s[i + 1]: raise RuntimeError('Input patch larger than training data ' '({}>{}) for dim #{}, sample #{}'.format( model.input_size[i], s[i + 1], i, j)) if data.val_images_mirrored: for j in range(len(data.val_images_mirrored)): s = data.val_images_mirrored[j].shape for i in range(len(s) - 1): if model.input_size[i] > s[i + 1]: raise RuntimeError( 'Input patch larger than validation data ' '({}>{}) for dim #{}, sample #{}'.format( model.input_size[i], s[i + 1], i, j)) if data.test_images_mirrored: for j in range(len(data.test_images_mirrored)): s = data.test_images_mirrored[j].shape for i in range(len(s) - 1): if model.input_size[i] > s[i + 1]: raise RuntimeError( 'Input patch larger than test data ' '({}>{}) for dim #{}, sample #{}'.format( model.input_size[i], s[i + 1], i, j)) if config["optimizer"] == "Adam": optimizer = optim.Adam( model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"], ) elif config["optimizer"] == "SGD": optimizer = optim.SGD( model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"], momentum=config["momentum"], ) elif config["optimizer"] == "RMSprop": optimizer = optim.RMSprop( model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"], momentum=config["momentum"], ) else: raise RuntimeError("Unsupported optimizer") # Load state first_batch = 0 fn = config["output"] + "/state.h5" if isfile(fn): # print("Loading state: '{}'".format(fn)) # with open(fn, "rb") as handle: # state = pickle.load(handle) state = dd.io.load(fn) first_batch = state["cur_batch"] + 1 else: state = {} # Load model fn = "{}/model-last.pth".format(config["output"]) if isfile(fn): print("Loading model: '{}'".format(fn)) model.load_state_dict(torch.load(fn)) else: print("No model to load") # Load optimizer fn = "{}/optim-last.pth".format(config["output"]) if isfile(fn): optimizer.load_state_dict(torch.load(fn)) else: print("No optimizer to load") state.setdefault("epoch", 0) state.setdefault("cur_batch", 0) state.setdefault("loss", np.zeros(config["max_steps"])) state.setdefault("res_train", {"batch": [], "metrics": []}) for t in config["test_thresholds"]: state.setdefault("res_train_th_{}".format(t), { "batch": [], "metrics": [] }) state.setdefault("res_val_th_{}".format(t), { "batch": [], "metrics": [] }) state.setdefault("res_test_th_{}".format(t), { "batch": [], "metrics": [] }) # TODO Learn to sample and update this accordingly if config["loss"] == "classification": # loss_criterion = torch.nn.NLLLoss(data.weights.cuda(), reduce=False) loss_criterion = F.nll_loss elif config["loss"] == "regression": raise RuntimeError("TODO") elif config['loss'] == 'jaccard' or config['loss'] == 'dice': from loss import OverlapLoss loss_criterion = OverlapLoss(config['loss'], config['overlap_loss_smoothness'], config['overlap_fp_factor']) else: raise RuntimeError("TODO") if model.is_3d: batch = torch.Tensor( config["batch_size"], data.num_channels, config["input_size"][0], config["input_size"][1], config["input_size"][2], ) # labels = torch.ByteTensor( if not data.dot_annotations: labels = torch.LongTensor( config["batch_size"], config["output_size"][0], config["output_size"][1], config["output_size"][2], ) else: labels = [] else: batch = torch.Tensor( config["batch_size"], data.num_channels, config["input_size"][0], config["input_size"][1], ) # labels = torch.ByteTensor( if not data.dot_annotations: labels = torch.LongTensor( config["batch_size"], config["output_size"][0], config["output_size"][1], ) else: labels = [] do_save_state = False model.train() # Sampler print("Instantiating sampler") sampler = Sampler( model.is_3d, { "images": data.train_images_optim, "labels": data.train_labels_optim, "mean": data.train_mean, "std": data.train_std }, config, rng, data.dot_annotations, ) if occ.is_busy(): occ.free() # Loop for state["cur_batch"] in range(first_batch, config["max_steps"]): # Sample ts = time() coords = [] elastic = [] for i in range(config["batch_size"]): b, l, cur_coords, cur_elastic = sampler.sample() batch[i] = torch.from_numpy(b) if not data.dot_annotations: labels[i] = torch.from_numpy(l) else: labels.append(torch.from_numpy(l)) coords.append(cur_coords) elastic.append(cur_elastic) # Forward pass inputs = Variable(batch).cuda() outputs = model(inputs) optimizer.zero_grad() if config['loss'] == 'jaccard' or config['loss'] == 'dice': targets = Variable(labels.float()).cuda() o = F.softmax(outputs, dim=1)[:, 1, :, :] loss = loss_criterion.forward(o, targets) loss = sum(loss) / len(loss) elif config['loss'] == 'classification': targets = Variable(labels).cuda() if data.is_3d: # Do it slice by slice. Ugly but it works! loss = [] for z in range(outputs.shape[2]): loss.append( loss_criterion(F.log_softmax(outputs[:, :, z, :, :], dim=1), targets[:, z, :, :], weight=data.weights.cuda(), reduce=True, ignore_index=2)) loss = sum(loss) / len(loss) else: # f(reduce=True) is equivalent to f(reduce=False).mean() # no need to average over the batch size then loss = loss_criterion(F.log_softmax(outputs, dim=1), targets, weight=data.weights.cuda(), reduce=True, ignore_index=2) else: raise RuntimeError('Bad loss type') # Sanity check # if not data.dot_annotations and loss.data.cpu().sum() > 10: # print("very high loss?") # embed() # Backward pass loss.backward() optimizer.step() # Get class stats ws = [0, 0] for l in labels: ws[0] += (l == 0).sum() ws[1] += (l == 1).sum() # Update state cur_loss = loss.data.cpu().sum() state["loss"][state["cur_batch"]] = cur_loss board['writer'].add_scalar(board['dataset'] + '-loss-' + board['loss'], cur_loss, state['cur_batch']) print( "Batch {it:d} -> Avg. loss {loss:.05f}: [{t:.02f} s.] (Range: {rg:.1f})" .format( it=state["cur_batch"] + 1, loss=cur_loss, t=time() - ts, rg=outputs.data.max() - outputs.data.min(), )) # Cross-validation force_eval = False if config["check_val_every"] > 0 and data.evaluate_val: if (state["cur_batch"] + 1) % config["check_val_every"] == 0: res = model.inference( { "images": data.val_images_mirrored, "mean": data.val_mean, "std": data.val_std, }, config['batch_size'], config['use_lcn'], ) is_best = model.validation_by_classification( images=data.val_images, gt=data.val_labels_th, prediction=res, state=state, board=board, output_folder=config['output'], xval_metric=config['xval_metric'], dilation_thresholds=config['test_thresholds'], subset='val', make_stack=data.plot_make_stack, force_save=False, ) # Save models if they are the best at any test threshold for k, v in is_best.items(): if v is True: save_model(config, state, model, optimizer, 'best_th_{}'.format(k)) do_save_state = True # Force testing on train/test force_eval = any(is_best.keys()) # Test on the training data if config["check_train_every"] > 0 and data.evaluate_train: if ((state["cur_batch"] + 1) % config["check_train_every"] == 0) or force_eval: res = model.inference( { "images": data.train_images_mirrored[:data.num_train_orig], "mean": data.train_mean, "std": data.train_std, }, config['batch_size'], config['use_lcn'], ) model.validation_by_classification( images=data.train_images[:data.num_train_orig], gt=data.train_labels_th, prediction=res, state=state, board=board, output_folder=config['output'], xval_metric=config['xval_metric'], dilation_thresholds=config['test_thresholds'], subset='train', make_stack=data.plot_make_stack, force_save=force_eval, ) # Test on the test data if config["check_test_every"] > 0 and data.evaluate_test: if ((state["cur_batch"] + 1) % config["check_test_every"] == 0) or force_eval: res = model.inference( { "images": data.test_images_mirrored, "mean": data.test_mean, "std": data.test_std, }, config['batch_size'], config['use_lcn'], ) model.validation_by_classification( images=data.test_images, gt=data.test_labels_th, prediction=res, state=state, board=board, output_folder=config['output'], xval_metric=config['xval_metric'], dilation_thresholds=config['test_thresholds'], subset='test', make_stack=data.plot_make_stack, force_save=force_eval, ) # Also save models periodically, to resume executions if config["save_models_every"] > 0: if (state["cur_batch"] + 1) % config["save_models_every"] == 0: save_model(config, state, model, optimizer, 'last') do_save_state = True # Save training state periodically (or if forced) if do_save_state: save_state(config, state) do_save_state = False board['writer'].close()
class generate_scores(base): """ usage: python generate_scores.py ../gan254 99 ../data/gan20 ../gan260 note: the script runs in gpu environment.the script intends to test validate dataset if d is fully trained. """ def __init__(self, prefix, epoch, data_dir, saved_path): self.prefix = prefix self.data = data_dir self.epoch = epoch self.batch_size = 32 self.power = 2 self.saved_path = saved_path self.dataloader = self.get_dataloader() self.config = self.load_config() self.unet = UNet(3, depth=self.config['u_depth'], in_channels=3) print(self.unet) print( 'load uent with depth %d and downsampling will be performed for %d times!!' % (self.config['u_depth'], self.config['u_depth'] - 1)) self.unet.load_state_dict( weight_to_cpu('%s/epoch_%s/g.pkl' % (self.prefix, self.epoch))) print('load pretrained unet') self.d = get_discriminator(self.config['gan_type'], self.config['d_depth'], self.config['dowmsampling']) self.d.load_state_dict( weight_to_cpu('%s/epoch_%s/d.pkl' % (self.prefix, self.epoch))) print('load pretrained d') def __call__(self): real_data_score = [] fake_data_score = [] for i, (lesion_data, _, lesion_names, _, real_data, _, normal_names, _) in enumerate(self.dataloader): print('id=%d' % i) lesion_output = self.d(self.unet(lesion_data)) fake_data_score += list( lesion_output.squeeze().data.numpy().flatten()) normal_output = self.d(real_data) real_data_score += list( normal_output.squeeze().data.numpy().flatten()) if not os.path.exists(self.saved_path): os.mkdir(self.saved_path) self.plot_hist('%s/score_distribution.png' % self.saved_path, real_data_score, fake_data_score) def load_config(self): return read(add_prefix(self.prefix, 'para.txt')) def get_dataloader(self): if self.data == '../data/gan17': print('training dataset of real normal data from gan15 in gan246.') elif self.data == '../data/gan18': print('validate dataset of unet lesion data output from gan246.') elif self.data == '../data/gan19': print('training dataset of real normal data from gan15 in gan253.') elif self.data == '../data/gan20': print('validate dataset of unet lesion data output from gan253.') else: raise ValueError( "the parameter data must be in ['./data/gan', './data/gan_h_flip']" ) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) dataset = ConcatDataset(data_dir=self.data, transform=transform, alpha=self.power) data_loader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=2, drop_last=False, pin_memory=False) return data_loader
transform=test_xtransform, target_transform=test_ytransform) else: raise ValueError( 'Unknown target dataset: the options are drosophila or hela. ') tar_train_loader = DataLoader(tar_train, batch_size=args.train_batch_size) tar_test_loader = DataLoader(tar_test, batch_size=args.test_batch_size) """ Setup optimization for finetuning """ print('[%s] Setting up optimization for finetuning' % (datetime.datetime.now())) # load best checkpoint # net = torch.load(os.path.join(args.log_dir, args.target, str(0.0), args.method, 'logs', 'pretraining', 'best_checkpoint.pytorch')) net = UNet(feature_maps=args.fm, levels=args.levels, group_norm=(args.group_norm == 1)) optimizer = optim.Adam(net.parameters(), lr=args.lr) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma) """ Finetune on target if necessary """ print('[%s] Finetuning with %d percent of the target labels' % (datetime.datetime.now(), args.frac_target_labels * 100)) seg_net = net.get_segmentation_net() if args.frac_target_labels > 0: seg_net.train_net(train_loader_src=tar_train_loader, test_loader_src=tar_test_loader, test_loader_tar=None,
# Config # with open(params.pickle, 'rb') as f: # config = pickle.load(f) config = dd.io.load(params.pickle) # Number of threads torch.set_num_threads(params.threads) if not params.use_cpu: print("Running on GPU {}".format(os.environ["CUDA_VISIBLE_DEVICES"])) config["batch_size"] = params.batch_size config["use_cpu"] = params.use_cpu # Compute input shape c = UNet.get_optimal_shape(output_shape_lower_bound=config["output_size"], steps=config["num_unet_steps"], num_convs=config["num_unet_convs"]) input_size = [int(ci) for ci in c["input"]] m = np.asarray(input_size) - np.asarray(config["output_size"]) if len(np.unique(m)) == 1: config["margin"] = m[0] else: raise RuntimeError("Should never be here?") if config["model"] == "UNet": print("Instantiating UNet") model = UNet( steps=config["num_unet_steps"], num_input_channels=np.int64(1), first_layer_channels=config["num_unet_filters"], num_classes=np.int64(2),
from networks.unet import UNet import torch UNet.get_shape_combinations(200, steps=4, num_convs=1)