Ejemplo n.º 1
0
def make_resolution_schedule(**kwargs):
    """Returns an object of `ResolutionSchedule`."""
    return networks.ResolutionSchedule(
        scale_mode=kwargs['scale_mode'],
        start_resolutions=(kwargs['start_height'], kwargs['start_width']),
        scale_base=kwargs['scale_base'],
        num_resolutions=kwargs['num_resolutions'])
Ejemplo n.º 2
0
    def test_generator_grad_norm_progress(self):
        stable_stage_num_images = 2
        transition_stage_num_images = 3

        current_image_id_ph = tf.placeholder(tf.int32, [])
        progress = networks.compute_progress(current_image_id_ph,
                                             stable_stage_num_images,
                                             transition_stage_num_images,
                                             num_blocks=3)
        z = tf.random_normal([2, 10], dtype=tf.float32)
        x, _ = networks.generator(
            z, progress, _num_filters_stub,
            networks.ResolutionSchedule(start_resolutions=(4, 4),
                                        scale_base=2,
                                        num_resolutions=3))
        fake_loss = tf.reduce_sum(tf.square(x))
        grad_norms = [
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_1/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_2/.*')),
            _get_grad_norm(
                fake_loss,
                tf.trainable_variables('.*/progressive_gan_block_3/.*'))
        ]

        grad_norms_output = None
        with self.test_session(use_gpu=True) as sess:
            sess.run(tf.global_variables_initializer())
            x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12})
            x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8})
            grad_norms_output = np.array([
                sess.run(grad_norms, feed_dict={current_image_id_ph: i})
                for i in range(15)  # total num of images
            ])

        self.assertEqual((2, 16, 16, 3), x1_np.shape)
        self.assertEqual((2, 16, 16, 3), x2_np.shape)
        # The gradient of block_1 is always on.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 0] > 0), 0,
            'gradient norms {} for block 1 is not always on'.format(
                grad_norms_output[:, 0]))
        # The gradient of block_2 is on after 1 stable stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 1] > 0), 3,
            'gradient norms {} for block 2 is not on at step 3'.format(
                grad_norms_output[:, 1]))
        # The gradient of block_3 is on after 2 stable stage + 1 transition stage.
        self.assertEqual(
            np.argmax(grad_norms_output[:, 2] > 0), 8,
            'gradient norms {} for block 3 is not on at step 8'.format(
                grad_norms_output[:, 2]))
Ejemplo n.º 3
0
 def test_blend_images_in_transition_stage(self):
     x_np = np.random.normal(size=[2, 8, 8, 3])
     x = tf.constant(x_np, tf.float32)
     x_blend = networks.blend_images(
         x,
         tf.constant(0.2),
         resolution_schedule=networks.ResolutionSchedule(scale_base=2,
                                                         num_resolutions=2),
         num_blocks=2)
     with self.test_session(use_gpu=True) as sess:
         x_blend_np = sess.run(x_blend)
         x_blend_expected_np = 0.8 * sess.run(
             layers.upscale(layers.downscale(x, 2), 2)) + 0.2 * x_np
     self.assertNDArrayNear(x_blend_np, x_blend_expected_np, 1.0e-6)
Ejemplo n.º 4
0
 def test_resolution_schedule_correct(self):
     rs = networks.ResolutionSchedule(start_resolutions=[5, 3],
                                      scale_base=2,
                                      num_resolutions=3)
     self.assertEqual(rs.start_resolutions, (5, 3))
     self.assertEqual(rs.scale_base, 2)
     self.assertEqual(rs.num_resolutions, 3)
     self.assertEqual(rs.final_resolutions, (20, 12))
     self.assertEqual(rs.scale_factor(1), 4)
     self.assertEqual(rs.scale_factor(2), 2)
     self.assertEqual(rs.scale_factor(3), 1)
     with self.assertRaises(ValueError):
         rs.scale_factor(0)
     with self.assertRaises(ValueError):
         rs.scale_factor(4)