def main(FLAGS): encoder = Encoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim) encoder.apply(weights_init) decoder = Decoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim) decoder.apply(weights_init) # load saved models if load_saved flag is true if FLAGS.load_saved: encoder.load_state_dict( torch.load(os.path.join('checkpoints', FLAGS.encoder_save))) decoder.load_state_dict( torch.load(os.path.join('checkpoints', FLAGS.decoder_save))) device = 'cuda:0' decoder.to(device) encoder.to(device) tsne = TSNE(2) mnist = DataLoader( datasets.MNIST(root='mnist', download=True, train=False, transform=transform_config)) s_dict = {} with torch.no_grad(): for i, (image, label) in enumerate(mnist): label = int(label) print(i, label) style_mu_1, style_logvar_1, class_latent_space_1 = encoder( image.to(device)) s_dict.setdefault(label, []).append(class_latent_space_1) s_all = [] for label in range(10): s_all.extend(s_dict[label]) s_all = torch.cat(s_all) s_all = s_all.view(s_all.shape[0], -1).cpu() s_2d = tsne.fit_transform(s_all) np.savez('s_2d.npz', s_2d=s_2d)
parser.add_argument("--device", default="cuda", help="device: cuda | cpu") parser.add_argument("--G_path", default="ckpts/G_epoch19.pt", help="path to trained state dict of generator") parser.add_argument("--D_path", default="ckpts/D_epoch19.pt", help="path to trained state dict of discriminator") opt = parser.parse_args() print(opt) img_shape = (opt.channels, opt.img_size, opt.img_size) generator = Generator(dim = 64, zdim=opt.latent_dim, nc=opt.channels) discriminator = Discriminator(dim = 64, zdim=opt.latent_dim, nc=opt.channels,out_feat=True) encoder = Encoder(dim = 64, zdim=opt.latent_dim, nc=opt.channels) generator.load_state_dict(torch.load(opt.G_path)) discriminator.load_state_dict(torch.load(opt.D_path)) generator.to(opt.device) encoder.to(opt.device) discriminator.to(opt.device) encoder.train() discriminator.train() dataloader = load_data(opt) generator.eval() Tensor = torch.cuda.FloatTensor if opt.device == 'cuda' else torch.FloatTensor optimizer_E = torch.optim.Adam(encoder.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) max_auc = 0
def training_procedure(FLAGS): """ model definition """ encoder = Encoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim) encoder.apply(weights_init) decoder = Decoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim) decoder.apply(weights_init) # load saved models if load_saved flag is true if FLAGS.load_saved: encoder.load_state_dict( torch.load(os.path.join('checkpoints', FLAGS.encoder_save))) decoder.load_state_dict( torch.load(os.path.join('checkpoints', FLAGS.decoder_save))) """ variable definition """ X = torch.FloatTensor(FLAGS.batch_size, 784) ''' run on GPU if GPU is available ''' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') encoder.to(device=device) decoder.to(device=device) X = X.to(device=device) """ optimizer definition """ auto_encoder_optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=FLAGS.initial_learning_rate, betas=(FLAGS.beta_1, FLAGS.beta_2)) """ """ if torch.cuda.is_available() and not FLAGS.cuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) if not os.path.exists('checkpoints'): os.makedirs('checkpoints') # load_saved is false when training is started from 0th iteration if not FLAGS.load_saved: with open(FLAGS.log_file, 'w') as log: log.write( 'Epoch\tIteration\tReconstruction_loss\tStyle_KL_divergence_loss\tClass_KL_divergence_loss\n' ) # load data set and create data loader instance dirs = os.listdir(os.path.join(os.getcwd(), 'data')) print('Loading double multivariate normal time series data...') for dsname in dirs: params = dsname.split('_') if params[2] in ('theta=-1'): print('Running dataset ', dsname) ds = DoubleMulNormal(dsname) # ds = experiment3(1000, 50, 3) loader = cycle( DataLoader(ds, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)) # initialize summary writer writer = SummaryWriter() for epoch in range(FLAGS.start_epoch, FLAGS.end_epoch): print() print( 'Epoch #' + str(epoch) + '........................................................') # the total loss at each epoch after running iterations of batches total_loss = 0 for iteration in range(int(len(ds) / FLAGS.batch_size)): # load a mini-batch image_batch, labels_batch = next(loader) # set zero_grad for the optimizer auto_encoder_optimizer.zero_grad() X.copy_(image_batch) style_mu, style_logvar, class_mu, class_logvar = encoder( Variable(X)) grouped_mu, grouped_logvar = accumulate_group_evidence( class_mu.data, class_logvar.data, labels_batch, FLAGS.cuda) # kl-divergence error for style latent space style_kl_divergence_loss = FLAGS.kl_divergence_coef * ( -0.5 * torch.sum(1 + style_logvar - style_mu.pow(2) - style_logvar.exp())) style_kl_divergence_loss /= (FLAGS.batch_size * FLAGS.num_channels * FLAGS.image_size * FLAGS.image_size) style_kl_divergence_loss.backward(retain_graph=True) # kl-divergence error for class latent space class_kl_divergence_loss = FLAGS.kl_divergence_coef * ( -0.5 * torch.sum(1 + grouped_logvar - grouped_mu.pow(2) - grouped_logvar.exp())) class_kl_divergence_loss /= (FLAGS.batch_size * FLAGS.num_channels * FLAGS.image_size * FLAGS.image_size) class_kl_divergence_loss.backward(retain_graph=True) # reconstruct samples """ sampling from group mu and logvar for each image in mini-batch differently makes the decoder consider class latent embeddings as random noise and ignore them """ style_latent_embeddings = reparameterize( training=True, mu=style_mu, logvar=style_logvar) class_latent_embeddings = group_wise_reparameterize( training=True, mu=grouped_mu, logvar=grouped_logvar, labels_batch=labels_batch, cuda=FLAGS.cuda) reconstructed_images = decoder(style_latent_embeddings, class_latent_embeddings) reconstruction_error = FLAGS.reconstruction_coef * mse_loss( reconstructed_images, Variable(X)) reconstruction_error.backward() total_loss += style_kl_divergence_loss + class_kl_divergence_loss + reconstruction_error auto_encoder_optimizer.step() if (iteration + 1) % 50 == 0: print('\tIteration #' + str(iteration)) print('Reconstruction loss: ' + str( reconstruction_error.data.storage().tolist()[0])) print('Style KL loss: ' + str(style_kl_divergence_loss.data.storage(). tolist()[0])) print('Class KL loss: ' + str(class_kl_divergence_loss.data.storage(). tolist()[0])) # write to log with open(FLAGS.log_file, 'a') as log: log.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format( epoch, iteration, reconstruction_error.data.storage().tolist()[0], style_kl_divergence_loss.data.storage().tolist() [0], class_kl_divergence_loss.data.storage().tolist() [0])) # write to tensorboard writer.add_scalar( 'Reconstruction loss', reconstruction_error.data.storage().tolist()[0], epoch * (int(len(ds) / FLAGS.batch_size) + 1) + iteration) writer.add_scalar( 'Style KL-Divergence loss', style_kl_divergence_loss.data.storage().tolist()[0], epoch * (int(len(ds) / FLAGS.batch_size) + 1) + iteration) writer.add_scalar( 'Class KL-Divergence loss', class_kl_divergence_loss.data.storage().tolist()[0], epoch * (int(len(ds) / FLAGS.batch_size) + 1) + iteration) if epoch == 0 and (iteration + 1) % 50 == 0: torch.save( encoder.state_dict(), os.path.join('checkpoints', 'encoder_' + dsname)) torch.save( decoder.state_dict(), os.path.join('checkpoints', 'decoder_' + dsname)) # save checkpoints after every 10 epochs if (epoch + 1) % 10 == 0 or (epoch + 1) == FLAGS.end_epoch: torch.save( encoder.state_dict(), os.path.join('checkpoints', 'encoder_' + dsname)) torch.save( decoder.state_dict(), os.path.join('checkpoints', 'decoder_' + dsname)) print('Total loss at current epoch: ', total_loss.item())
def test(opt): #### mkdir des_pth = os.path.join('results', opt.name) if os.path.exists(os.path.join(des_pth)) is not True: os.mkdir(des_pth) src_pth = os.path.join(opt.checkpoints, opt.name) models_name = os.listdir(src_pth) models_name.remove('images') models_name.remove('records.txt') models_name.sort(key=lambda x: int(x[6:9])) target = int(models_name[-1][6:9]) #### device device = torch.device('cuda:{}'.format(opt.gpu_id) if opt.gpu_id >= 0 else torch.device('cpu')) #### data data_loader = UnAlignedDataLoader() data_loader.initialize(opt) data_set = data_loader.load_data() #### networks ## initialize E_a2b = Encoder(input_nc=opt.input_nc, ngf=opt.ngf, norm_type=opt.norm_type, use_dropout=not opt.no_dropout, n_blocks=9) G_b = Decoder(output_nc=opt.output_nc, ngf=opt.ngf, norm_type=opt.norm_type) E_b2a = Encoder(input_nc=opt.input_nc, ngf=opt.ngf, norm_type=opt.norm_type, use_dropout=not opt.no_dropout, n_blocks=9) G_a = Decoder(output_nc=opt.output_nc, ngf=opt.ngf, norm_type=opt.norm_type) ## load in models E_a2b.load_state_dict(torch.load(os.path.join(src_pth, 'epoch_%3d-E_a2b.pth'%target))) G_b.load_state_dict(torch.load(os.path.join(src_pth, 'epoch_%3d-G_b.pth'%target))) E_b2a.load_state_dict(torch.load(os.path.join(src_pth, 'epoch_%3d-E_b2a.pth' % target))) G_a.load_state_dict(torch.load(os.path.join(src_pth, 'epoch_%3d-G_a.pth' % target))) E_a2b = E_a2b.to(device) G_b = G_b.to(device) E_b2a = E_b2a.to(device) G_a = G_a.to(device) for i, data in enumerate(data_set): real_A = data['A'].to(device) real_B = data['B'].to(device) fake_B = G_b(E_a2b(real_A)) fake_A = G_a(E_b2a(real_B)) ## visualize if opt.gpu_id >= 0: fake_B = fake_B.cpu().data fake_A = fake_A.cpu().data real_A = real_A.cpu() real_B = real_B.cpu() for j in range(opt.batch_size): fake_b = tensor2image_RGB(fake_B[j, ...]) fake_a = tensor2image_RGB(fake_A[j, ...]) real_a = tensor2image_RGB(real_A[j, ...]) real_b = tensor2image_RGB(real_B[j, ...]) plt.subplot(221), plt.title("real_A"), plt.imshow(real_a) plt.subplot(222), plt.title("fake_B"), plt.imshow(fake_b) plt.subplot(223), plt.title("real_B"), plt.imshow(real_b) plt.subplot(224), plt.title("fake_A"), plt.imshow(fake_a) plt.savefig(os.path.join(des_pth, '%06d-%02d.jpg'%(i, j))) #break #-> debug print("≧◔◡◔≦ Congratulation! Successfully finishing the testing!")
def train(opt): #### device device = torch.device('cuda:{}'.format(opt.gpu_id) if opt.gpu_id >= 0 else torch.device('cpu')) #### dataset data_loader = UnAlignedDataLoader() data_loader.initialize(opt) data_set = data_loader.load_data() print("The number of training images = %d." % len(data_set)) #### initialize models ## declaration E_a2Zb = Encoder(input_nc=opt.input_nc, ngf=opt.ngf, norm_type=opt.norm_type, use_dropout=not opt.no_dropout, n_blocks=9) G_Zb2b = Decoder(output_nc=opt.output_nc, ngf=opt.ngf, norm_type=opt.norm_type) T_Zb2Za = LatentTranslator(n_channels=256, norm_type=opt.norm_type, use_dropout=not opt.no_dropout) D_b = Discriminator(input_nc=opt.input_nc, ndf=opt.ndf, n_layers=opt.n_layers, norm_type=opt.norm_type) E_b2Za = Encoder(input_nc=opt.input_nc, ngf=opt.ngf, norm_type=opt.norm_type, use_dropout=not opt.no_dropout, n_blocks=9) G_Za2a = Decoder(output_nc=opt.output_nc, ngf=opt.ngf, norm_type=opt.norm_type) T_Za2Zb = LatentTranslator(n_channels=256, norm_type=opt.norm_type, use_dropout=not opt.no_dropout) D_a = Discriminator(input_nc=opt.input_nc, ndf=opt.ndf, n_layers=opt.n_layers, norm_type=opt.norm_type) ## initialization E_a2Zb = init_net(E_a2Zb, init_type=opt.init_type).to(device) G_Zb2b = init_net(G_Zb2b, init_type=opt.init_type).to(device) T_Zb2Za = init_net(T_Zb2Za, init_type=opt.init_type).to(device) D_b = init_net(D_b, init_type=opt.init_type).to(device) E_b2Za = init_net(E_b2Za, init_type=opt.init_type).to(device) G_Za2a = init_net(G_Za2a, init_type=opt.init_type).to(device) T_Za2Zb = init_net(T_Za2Zb, init_type=opt.init_type).to(device) D_a = init_net(D_a, init_type=opt.init_type).to(device) print( "+------------------------------------------------------+\nFinish initializing networks." ) #### optimizer and criterion ## criterion criterionGAN = GANLoss(opt.gan_mode).to(device) criterionZId = nn.L1Loss() criterionIdt = nn.L1Loss() criterionCTC = nn.L1Loss() criterionZCyc = nn.L1Loss() ## optimizer optimizer_G = torch.optim.Adam(itertools.chain(E_a2Zb.parameters(), G_Zb2b.parameters(), T_Zb2Za.parameters(), E_b2Za.parameters(), G_Za2a.parameters(), T_Za2Zb.parameters()), lr=opt.lr, betas=(opt.beta1, opt.beta2)) optimizer_D = torch.optim.Adam(itertools.chain(D_a.parameters(), D_b.parameters()), lr=opt.lr, betas=(opt.beta1, opt.beta2)) ## scheduler scheduler = [ get_scheduler(optimizer_G, opt), get_scheduler(optimizer_D, opt) ] print( "+------------------------------------------------------+\nFinish initializing the optimizers and criterions." ) #### global variables checkpoints_pth = os.path.join(opt.checkpoints, opt.name) if os.path.exists(checkpoints_pth) is not True: os.mkdir(checkpoints_pth) os.mkdir(os.path.join(checkpoints_pth, 'images')) record_fh = open(os.path.join(checkpoints_pth, 'records.txt'), 'w', encoding='utf-8') loss_names = [ 'GAN_A', 'Adv_A', 'Idt_A', 'CTC_A', 'ZId_A', 'ZCyc_A', 'GAN_B', 'Adv_B', 'Idt_B', 'CTC_B', 'ZId_B', 'ZCyc_B' ] fake_A_pool = ImagePool( opt.pool_size ) # create image buffer to store previously generated images fake_B_pool = ImagePool( opt.pool_size ) # create image buffer to store previously generated images print( "+------------------------------------------------------+\nFinish preparing the other works." ) print( "+------------------------------------------------------+\nNow training is beginning .." ) #### training cur_iter = 0 for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() # timer for entire epoch for i, data in enumerate(data_set): ## setup inputs real_A = data['A'].to(device) real_B = data['B'].to(device) ## forward # image cycle / GAN latent_B = E_a2Zb(real_A) #-> a -> Zb : E_a2b(a) fake_B = G_Zb2b(latent_B) #-> Zb -> b' : G_b(E_a2b(a)) latent_A = E_b2Za(real_B) #-> b -> Za : E_b2a(b) fake_A = G_Za2a(latent_A) #-> Za -> a' : G_a(E_b2a(b)) # Idt ''' rec_A = G_Za2a(E_b2Za(fake_B)) #-> b' -> Za' -> rec_a : G_a(E_b2a(fake_b)) rec_B = G_Zb2b(E_a2Zb(fake_A)) #-> a' -> Zb' -> rec_b : G_b(E_a2b(fake_a)) ''' idt_latent_A = E_b2Za(real_A) #-> a -> Za : E_b2a(a) idt_A = G_Za2a(idt_latent_A) #-> Za -> idt_a : G_a(E_b2a(a)) idt_latent_B = E_a2Zb(real_B) #-> b -> Zb : E_a2b(b) idt_B = G_Zb2b(idt_latent_B) #-> Zb -> idt_b : G_b(E_a2b(b)) # ZIdt T_latent_A = T_Zb2Za(latent_B) #-> Zb -> Za'' : T_b2a(E_a2b(a)) T_rec_A = G_Za2a( T_latent_A) #-> Za'' -> a'' : G_a(T_b2a(E_a2b(a))) T_latent_B = T_Za2Zb(latent_A) #-> Za -> Zb'' : T_a2b(E_b2a(b)) T_rec_B = G_Zb2b( T_latent_B) #-> Zb'' -> b'' : G_b(T_a2b(E_b2a(b))) # CTC T_idt_latent_B = T_Za2Zb(idt_latent_A) #-> a -> T_a2b(E_b2a(a)) T_idt_latent_A = T_Zb2Za(idt_latent_B) #-> b -> T_b2a(E_a2b(b)) # ZCyc TT_latent_B = T_Za2Zb(T_latent_A) #-> T_a2b(T_b2a(E_a2b(a))) TT_latent_A = T_Zb2Za(T_latent_B) #-> T_b2a(T_a2b(E_b2a(b))) ### optimize parameters ## Generator updating set_requires_grad( [D_b, D_a], False) #-> set Discriminator to require no gradient optimizer_G.zero_grad() # GAN loss loss_G_A = criterionGAN(D_b(fake_B), True) loss_G_B = criterionGAN(D_a(fake_A), True) loss_GAN = loss_G_A + loss_G_B # Idt loss loss_idt_A = criterionIdt(idt_A, real_A) loss_idt_B = criterionIdt(idt_B, real_B) loss_Idt = loss_idt_A + loss_idt_B # Latent cross-identity loss loss_Zid_A = criterionZId(T_rec_A, real_A) loss_Zid_B = criterionZId(T_rec_B, real_B) loss_Zid = loss_Zid_A + loss_Zid_B # Latent cross-translation consistency loss_CTC_A = criterionCTC(T_idt_latent_A, latent_A) loss_CTC_B = criterionCTC(T_idt_latent_B, latent_B) loss_CTC = loss_CTC_B + loss_CTC_A # Latent cycle consistency loss_ZCyc_A = criterionZCyc(TT_latent_A, latent_A) loss_ZCyc_B = criterionZCyc(TT_latent_B, latent_B) loss_ZCyc = loss_ZCyc_B + loss_ZCyc_A loss_G = opt.lambda_gan * loss_GAN + opt.lambda_idt * loss_Idt + opt.lambda_zid * loss_Zid + opt.lambda_ctc * loss_CTC + opt.lambda_zcyc * loss_ZCyc # backward and gradient updating loss_G.backward() optimizer_G.step() ## Discriminator updating set_requires_grad([D_b, D_a], True) # -> set Discriminator to require gradient optimizer_D.zero_grad() # backward D_b fake_B_ = fake_B_pool.query(fake_B) #-> real_B, fake_B pred_real_B = D_b(real_B) loss_D_real_B = criterionGAN(pred_real_B, True) pred_fake_B = D_b(fake_B_) loss_D_fake_B = criterionGAN(pred_fake_B, False) loss_D_B = (loss_D_real_B + loss_D_fake_B) * 0.5 loss_D_B.backward() # backward D_a fake_A_ = fake_A_pool.query(fake_A) #-> real_A, fake_A pred_real_A = D_a(real_A) loss_D_real_A = criterionGAN(pred_real_A, True) pred_fake_A = D_a(fake_A_) loss_D_fake_A = criterionGAN(pred_fake_A, False) loss_D_A = (loss_D_real_A + loss_D_fake_A) * 0.5 loss_D_A.backward() # update the gradients optimizer_D.step() ### validate here, both qualitively and quantitatively ## record the losses if cur_iter % opt.log_freq == 0: # loss_names = ['GAN_A', 'Adv_A', 'Idt_A', 'CTC_A', 'ZId_A', 'ZCyc_A', 'GAN_B', 'Adv_B', 'Idt_B', 'CTC_B', 'ZId_B', 'ZCyc_B'] losses = [ loss_G_A.item(), loss_D_A.item(), loss_idt_A.item(), loss_CTC_A.item(), loss_Zid_A.item(), loss_ZCyc_A.item(), loss_G_B.item(), loss_D_B.item(), loss_idt_B.item(), loss_CTC_B.item(), loss_Zid_B.item(), loss_ZCyc_B.item() ] # record line = '' for loss in losses: line += '{} '.format(loss) record_fh.write(line[:-1] + '\n') # print out print('Epoch: %3d/%3dIter: %9d--------------------------+' % (epoch, opt.epoch, i)) field_names = loss_names[:len(loss_names) // 2] table = PrettyTable(field_names=field_names) for l_n in field_names: table.align[l_n] = 'm' table.add_row(losses[:len(field_names)]) print(table.get_string(reversesort=True)) field_names = loss_names[len(loss_names) // 2:] table = PrettyTable(field_names=field_names) for l_n in field_names: table.align[l_n] = 'm' table.add_row(losses[-len(field_names):]) print(table.get_string(reversesort=True)) ## visualize if cur_iter % opt.vis_freq == 0: if opt.gpu_id >= 0: real_A = real_A.cpu().data real_B = real_B.cpu().data fake_A = fake_A.cpu().data fake_B = fake_B.cpu().data idt_A = idt_A.cpu().data idt_B = idt_B.cpu().data T_rec_A = T_rec_A.cpu().data T_rec_B = T_rec_B.cpu().data plt.subplot(241), plt.title('real_A'), plt.imshow( tensor2image_RGB(real_A[0, ...])) plt.subplot(242), plt.title('fake_B'), plt.imshow( tensor2image_RGB(fake_B[0, ...])) plt.subplot(243), plt.title('idt_A'), plt.imshow( tensor2image_RGB(idt_A[0, ...])) plt.subplot(244), plt.title('L_idt_A'), plt.imshow( tensor2image_RGB(T_rec_A[0, ...])) plt.subplot(245), plt.title('real_B'), plt.imshow( tensor2image_RGB(real_B[0, ...])) plt.subplot(246), plt.title('fake_A'), plt.imshow( tensor2image_RGB(fake_A[0, ...])) plt.subplot(247), plt.title('idt_B'), plt.imshow( tensor2image_RGB(idt_B[0, ...])) plt.subplot(248), plt.title('L_idt_B'), plt.imshow( tensor2image_RGB(T_rec_B[0, ...])) plt.savefig( os.path.join(checkpoints_pth, 'images', '%03d_%09d.jpg' % (epoch, i))) cur_iter += 1 #break #-> debug ## till now, we finish one epoch, try to update the learning rate update_learning_rate(schedulers=scheduler, opt=opt, optimizer=optimizer_D) ## save the model if epoch % opt.ckp_freq == 0: #-> save models # torch.save(model.state_dict(), PATH) #-> load in models # model.load_state_dict(torch.load(PATH)) # model.eval() if opt.gpu_id >= 0: E_a2Zb = E_a2Zb.cpu() G_Zb2b = G_Zb2b.cpu() T_Zb2Za = T_Zb2Za.cpu() D_b = D_b.cpu() E_b2Za = E_b2Za.cpu() G_Za2a = G_Za2a.cpu() T_Za2Zb = T_Za2Zb.cpu() D_a = D_a.cpu() ''' torch.save( E_a2Zb.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-E_a2b.pth' % epoch)) torch.save( G_Zb2b.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-G_b.pth' % epoch)) torch.save(T_Zb2Za.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-T_b2a.pth' % epoch)) torch.save( D_b.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-D_b.pth' % epoch)) torch.save( E_b2Za.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-E_b2a.pth' % epoch)) torch.save( G_Za2a.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-G_a.pth' % epoch)) torch.save(T_Za2Zb.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-T_a2b.pth' % epoch)) torch.save( D_a.cpu().state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-D_a.pth' % epoch)) ''' torch.save( E_a2Zb.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-E_a2b.pth' % epoch)) torch.save( G_Zb2b.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-G_b.pth' % epoch)) torch.save( T_Zb2Za.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-T_b2a.pth' % epoch)) torch.save( D_b.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-D_b.pth' % epoch)) torch.save( E_b2Za.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-E_b2a.pth' % epoch)) torch.save( G_Za2a.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-G_a.pth' % epoch)) torch.save( T_Za2Zb.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-T_a2b.pth' % epoch)) torch.save( D_a.state_dict(), os.path.join(checkpoints_pth, 'epoch_%3d-D_a.pth' % epoch)) if opt.gpu_id >= 0: E_a2Zb = E_a2Zb.to(device) G_Zb2b = G_Zb2b.to(device) T_Zb2Za = T_Zb2Za.to(device) D_b = D_b.to(device) E_b2Za = E_b2Za.to(device) G_Za2a = G_Za2a.to(device) T_Za2Zb = T_Za2Zb.to(device) D_a = D_a.to(device) print("+Successfully saving models in epoch: %3d.-------------+" % epoch) #break #-> debug record_fh.close() print("≧◔◡◔≦ Congratulation! Finishing the training!")
dirs = os.listdir(os.path.join(cwd, 'data')) print('Loading double univariate normal time series test data...') for dsname in dirs: params = dsname.split('_') if params[2] in ('theta=-1'): # load saved parameters of encoder and decoder encoder.load_state_dict( torch.load(os.path.join(cwd, 'checkpoints', 'encoder_' + dsname), map_location=lambda storage, loc: storage)) decoder.load_state_dict( torch.load(os.path.join(cwd, 'checkpoints', 'decoder_' + dsname), map_location=lambda storage, loc: storage)) encoder = encoder.to(device=device) decoder = decoder.to(device=device) paired_mnist = DoubleMulNormal(dsname) loader = cycle( DataLoader(paired_mnist, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0, drop_last=True)) test_data = torch.from_numpy(paired_mnist.x_test) ### Would recommend using this pattern use_gpu = torch.cuda.is_available() # get the true change points and create list for predicted change points
# Paths checkpoint_path = join('results', args.experiment_name, 'checkpoint') test_path = join('results', args.experiment_name, 'sample_val') os.makedirs(test_path, exist_ok=True) # Data if args.dataset == 'COCO-Stuff': from data import COCO_Stuff val_dset = COCO_Stuff(args.data, mode='val') n_classes = COCO_Stuff.n_classes val_data = data.DataLoader(val_dset, batch_size = args.batch_size, shuffle=False, drop_last=False) # Models E = Encoder() E.to(device) G = Generator(n_classes) G.to(device) if args.multi_gpu: # If trained with multi-GPU, the model needs to be loaded with multi-GPU, too. E = nn.DataParallel(E) G = nn.DataParallel(G) # G = convert_model(G) # Load from checkpoints load_epoch = args.test_epoch if load_epoch is None: # Use the lastest model load_epoch = max(int(path.split('.')[0]) for path in listdir(checkpoint_path) if path.split('.')[0].isdigit()) print('Loading generator from epoch {:03d}'.format(load_epoch)) E.load_state_dict(torch.load( join(checkpoint_path, '{:03d}.E.pth'.format(load_epoch)),