Ejemplo n.º 1
0
    def setUp(self):
        # G is the example graph in Figure 1 from Batagelj and
        # Zaversnik's paper titled An O(m) Algorithm for Cores
        # Decomposition of Networks, 2003,
        # http://arXiv.org/abs/cs/0310049.  With nodes labeled as
        # shown, the 3-core is given by nodes 1-8, the 2-core by nodes
        # 9-16, the 1-core by nodes 17-20 and node 21 is in the
        # 0-core.
        t1 = nx.convert_node_labels_to_integers(nx.tetrahedral_graph(), 1)
        t2 = nx.convert_node_labels_to_integers(t1, 5)
        G = nx.union(t1, t2)
        G.add_edges_from([(3, 7), (2, 11), (11, 5), (11, 12), (5, 12),
                          (12, 19), (12, 18), (3, 9), (7, 9), (7, 10),
                          (9, 10), (9, 20), (17, 13), (13, 14), (14, 15),
                          (15, 16), (16, 13)])
        G.add_node(21)
        self.G = G

        # Create the graph H resulting from the degree sequence
        # [0, 1, 2, 2, 2, 2, 3] when using the Havel-Hakimi algorithm.

        degseq = [0, 1, 2, 2, 2, 2, 3]
        H = nx.havel_hakimi_graph(degseq)
        mapping = {6: 0, 0: 1, 4: 3, 5: 6, 3: 4, 1: 2, 2: 5}
        self.H = nx.relabel_nodes(H, mapping)
Ejemplo n.º 2
0
    def setUp(self):
        # G is the example graph in Figure 1 from Batagelj and
        # Zaversnik's paper titled An O(m) Algorithm for Cores
        # Decomposition of Networks, 2003,
        # http://arXiv.org/abs/cs/0310049.  With nodes labeled as
        # shown, the 3-core is given by nodes 1-8, the 2-core by nodes
        # 9-16, the 1-core by nodes 17-20 and node 21 is in the
        # 0-core.
        t1 = nx.convert_node_labels_to_integers(nx.tetrahedral_graph(), 1)
        t2 = nx.convert_node_labels_to_integers(t1, 5)
        G = nx.union(t1, t2)
        G.add_edges_from([(3, 7), (2, 11), (11, 5), (11, 12), (5, 12),
                          (12, 19), (12, 18), (3, 9), (7, 9), (7, 10), (9, 10),
                          (9, 20), (17, 13), (13, 14), (14, 15), (15, 16),
                          (16, 13)])
        G.add_node(21)
        self.G = G

        # Create the graph H resulting from the degree sequence
        # [0, 1, 2, 2, 2, 2, 3] when using the Havel-Hakimi algorithm.

        degseq = [0, 1, 2, 2, 2, 2, 3]
        H = nx.havel_hakimi_graph(degseq)
        mapping = {6: 0, 0: 1, 4: 3, 5: 6, 3: 4, 1: 2, 2: 5}
        self.H = nx.relabel_nodes(H, mapping)
Ejemplo n.º 3
0
def TetrahedralGraph():
    """
    Returns a tetrahedral graph (with 4 nodes).

    A tetrahedron is a 4-sided triangular pyramid. The tetrahedral
    graph corresponds to the connectivity of the vertices of the
    tetrahedron. This graph is equivalent to a wheel graph with 4 nodes
    and also a complete graph on four nodes. (See examples below).

    PLOTTING: The tetrahedral graph should be viewed in 3 dimensions.
    We chose to use the default spring-layout algorithm here, so that
    multiple iterations might yield a different point of reference for
    the user. We hope to add rotatable, 3-dimensional viewing in the
    future. In such a case, a string argument will be added to select
    the flat spring-layout over a future implementation.

    EXAMPLES: Construct and show a Tetrahedral graph

    ::

        sage: g = graphs.TetrahedralGraph()
        sage: g.show() # long time

    The following example requires networkx::

        sage: import networkx as NX

    Compare this Tetrahedral, Wheel(4), Complete(4), and the
    Tetrahedral plotted with the spring-layout algorithm below in a
    Sage graphics array::

        sage: tetra_pos = graphs.TetrahedralGraph()
        sage: tetra_spring = Graph(NX.tetrahedral_graph())
        sage: wheel = graphs.WheelGraph(4)
        sage: complete = graphs.CompleteGraph(4)
        sage: g = [tetra_pos, tetra_spring, wheel, complete]
        sage: j = []
        sage: for i in range(2):
        ....:     n = []
        ....:     for m in range(2):
        ....:         n.append(g[i + m].plot(vertex_size=50, vertex_labels=False))
        ....:     j.append(n)
        sage: G = graphics_array(j)
        sage: G.show() # long time
    """
    import networkx
    G = networkx.tetrahedral_graph()
    return Graph(G,
                 name="Tetrahedron",
                 pos={
                     0: (0, 0),
                     1: (0, 1),
                     2: (cos(3.5 * pi / 3), sin(3.5 * pi / 3)),
                     3: (cos(5.5 * pi / 3), sin(5.5 * pi / 3))
                 })
Ejemplo n.º 4
0
def classic_small_graphs():
    petersen = nx.petersen_graph()
    tutte = nx.tutte_graph()
    maze = nx.sedgewick_maze_graph()
    tet = nx.tetrahedral_graph()

    g_list = [petersen, tutte, maze, tet]
    for n, g in enumerate(g_list):
        plt.subplot(221+n)
        nx.draw(g, with_labels=True, font_weight='bold')
    plt.show()
Ejemplo n.º 5
0
def practice():
    Peterson = nx.petersen_graph()
    tutte = nx.tutte_graph()
    maze = nx.sedgewick_maze_graph()
    tet = nx.tetrahedral_graph()
    G = nx.random_tree(20)

    nx.draw(G, pos=nx.spring_layout(G), with_labels=True)
    #nx.draw_shell(G, nlist=[range(5, 10), range(5)], with_labels=True, font_weight='bold')

    plt.show()
Ejemplo n.º 6
0
 def test_is_distance_regular(self):
     assert_true(nx.is_distance_regular(nx.icosahedral_graph()))
     assert_true(nx.is_distance_regular(nx.petersen_graph()))
     assert_true(nx.is_distance_regular(nx.cubical_graph()))
     assert_true(nx.is_distance_regular(nx.complete_bipartite_graph(3,3)))
     assert_true(nx.is_distance_regular(nx.tetrahedral_graph()))
     assert_true(nx.is_distance_regular(nx.dodecahedral_graph()))
     assert_true(nx.is_distance_regular(nx.pappus_graph()))
     assert_true(nx.is_distance_regular(nx.heawood_graph()))
     assert_true(nx.is_distance_regular(nx.cycle_graph(3)))
     # no distance regular
     assert_false(nx.is_distance_regular(nx.path_graph(4)))
Ejemplo n.º 7
0
def TetrahedralGraph():
    """
    Returns a tetrahedral graph (with 4 nodes).

    A tetrahedron is a 4-sided triangular pyramid. The tetrahedral
    graph corresponds to the connectivity of the vertices of the
    tetrahedron. This graph is equivalent to a wheel graph with 4 nodes
    and also a complete graph on four nodes. (See examples below).

    PLOTTING: The tetrahedral graph should be viewed in 3 dimensions.
    We chose to use the default spring-layout algorithm here, so that
    multiple iterations might yield a different point of reference for
    the user. We hope to add rotatable, 3-dimensional viewing in the
    future. In such a case, a string argument will be added to select
    the flat spring-layout over a future implementation.

    EXAMPLES: Construct and show a Tetrahedral graph

    ::

        sage: g = graphs.TetrahedralGraph()
        sage: g.show() # long time

    The following example requires networkx::

        sage: import networkx as NX

    Compare this Tetrahedral, Wheel(4), Complete(4), and the
    Tetrahedral plotted with the spring-layout algorithm below in a
    Sage graphics array::

        sage: tetra_pos = graphs.TetrahedralGraph()
        sage: tetra_spring = Graph(NX.tetrahedral_graph())
        sage: wheel = graphs.WheelGraph(4)
        sage: complete = graphs.CompleteGraph(4)
        sage: g = [tetra_pos, tetra_spring, wheel, complete]
        sage: j = []
        sage: for i in range(2):
        ...    n = []
        ...    for m in range(2):
        ...        n.append(g[i + m].plot(vertex_size=50, vertex_labels=False))
        ...    j.append(n)
        sage: G = sage.plot.graphics.GraphicsArray(j)
        sage: G.show() # long time
    """
    import networkx
    G = networkx.tetrahedral_graph()
    return graph.Graph(G, name="Tetrahedron", pos =
                       { 0 : (0, 0),
                         1 : (0, 1),
                         2 : (cos(3.5*pi/3), sin(3.5*pi/3)),
                         3 : (cos(5.5*pi/3), sin(5.5*pi/3))}
                       )
 def test_is_distance_regular(self):
     assert_true(nx.is_distance_regular(nx.icosahedral_graph()))
     assert_true(nx.is_distance_regular(nx.petersen_graph()))
     assert_true(nx.is_distance_regular(nx.cubical_graph()))
     assert_true(nx.is_distance_regular(nx.complete_bipartite_graph(3, 3)))
     assert_true(nx.is_distance_regular(nx.tetrahedral_graph()))
     assert_true(nx.is_distance_regular(nx.dodecahedral_graph()))
     assert_true(nx.is_distance_regular(nx.pappus_graph()))
     assert_true(nx.is_distance_regular(nx.heawood_graph()))
     assert_true(nx.is_distance_regular(nx.cycle_graph(3)))
     # no distance regular
     assert_false(nx.is_distance_regular(nx.path_graph(4)))
Ejemplo n.º 9
0
def test_tensor_product_classic_result():
    K2 = nx.complete_graph(2)
    G = nx.petersen_graph()
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.desargues_graph()))

    G = nx.cycle_graph(5)
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.cycle_graph(10)))

    G = nx.tetrahedral_graph()
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.cubical_graph()))
Ejemplo n.º 10
0
def test_tensor_product_classic_result():
    K2 = nx.complete_graph(2)
    G = nx.petersen_graph()
    G = nx.tensor_product(G, K2)
    assert_true(nx.is_isomorphic(G, nx.desargues_graph()))

    G = nx.cycle_graph(5)
    G = nx.tensor_product(G, K2)
    assert_true(nx.is_isomorphic(G, nx.cycle_graph(10)))

    G = nx.tetrahedral_graph()
    G = nx.tensor_product(G, K2)
    assert_true(nx.is_isomorphic(G, nx.cubical_graph()))
Ejemplo n.º 11
0
def platonic(n):  # n must be 4, 6, 8, 12 or 20
    # returns the matrix for sp2 platonic solid, with alpha = 0 and beta = -1
    n_int = int(n)
    if n_int == 4:
        s = nx.tetrahedral_graph()
    elif n_int == 6:
        s = nx.cubical_graph()
    elif n_int == 8:
        s = nx.octahedral_graph()
    elif n_int == 12:
        s = nx.dodecahedral_graph()
    elif n_int == 20:
        s = nx.icosahedral_graph()
    else:
        print("n must be equal to 4, 6, 8, 12 or 20")

    M = -nx.adjacency_matrix(s)
    return M.todense()
Ejemplo n.º 12
0
def test_tensor_product():
    null=nx.null_graph()
    empty1=nx.empty_graph(1)
    empty10=nx.empty_graph(10)
    K2=nx.complete_graph(2)
    K3=nx.complete_graph(3)
    K5=nx.complete_graph(5)
    K10=nx.complete_graph(10)
    P2=nx.path_graph(2)
    P3=nx.path_graph(3)
    P5=nx.path_graph(5)
    P10=nx.path_graph(10)
    # null graph
    G=tensor_product(null,null)
    assert_true(nx.is_isomorphic(G,null))
    # null_graph X anything = null_graph and v.v.
    G=tensor_product(null,empty10)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(null,K3)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(null,K10)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(null,P3)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(null,P10)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(empty10,null)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(K3,null)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(K10,null)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(P3,null)
    assert_true(nx.is_isomorphic(G,null))
    G=tensor_product(P10,null)
    assert_true(nx.is_isomorphic(G,null))

    G=tensor_product(P5,K3)
    assert_equal(nx.number_of_nodes(G),5*3)
    G=tensor_product(K3,K5)
    assert_equal(nx.number_of_nodes(G),3*5)

    G = nx.petersen_graph()
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.desargues_graph()))

    G = nx.cycle_graph(5)
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.cycle_graph(10)))

    G = nx.tetrahedral_graph()
    G = tensor_product(G,K2)
    assert_true(nx.is_isomorphic(G,nx.cubical_graph()))

    G = nx.erdos_renyi_graph(10,2/10.)
    H = nx.erdos_renyi_graph(10,2/10.)
    GH = tensor_product(G,H)

    for (u_G,u_H) in GH.nodes_iter():
        for (v_G,v_H) in GH.nodes_iter():
            if H.has_edge(u_H,v_H) and G.has_edge(u_G,v_G):
                assert_true(GH.has_edge((u_G,u_H),(v_G,v_H)))
            else:
                assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H)))
Ejemplo n.º 13
0
 def test_tetrahedral(self):
     expected = True
     actual = is_planar(nx.tetrahedral_graph())
     self.assertEqual(expected, actual)
Ejemplo n.º 14
0
# 典型的なグラフ操作
# subgraph(G, nbunch)      - induce subgraph of G on nodes in nbunch
# union(G1,G2)             - graph union
# disjoint_union(G1,G2)    - graph union assuming all nodes are different
# cartesian_product(G1,G2) - return Cartesian product graph
# compose(G1,G2)           - combine graphs identifying nodes common to both
# complement(G)            - graph complement
# create_empty_copy(G)     - return an empty copy of the same graph class
# convert_to_undirected(G) - return an undirected representation of G
# convert_to_directed(G)   - return a directed representation of G


petersen=nx.petersen_graph() # ピーターセングラフ 10個の頂点と15個の辺からなる無向グラフ。グラフ理論の様々な問題の例、あるいは反例としてよく使われる。
tutte=nx.tutte_graph() # Tutte グラフ
maze=nx.sedgewick_maze_graph() 
tet=nx.tetrahedral_graph() # テトラへドラル

K_5=nx.complete_graph(5) # 完全グラフ
K_3_5=nx.complete_bipartite_graph(3,5) #完全二部グラフ 2部グラフのうち特に第1の集合に属するそれぞれの頂点から第2の集合に属する全ての頂点に辺が伸びているもの
barbell=nx.barbell_graph(10,10) # 
lollipop=nx.lollipop_graph(10,20) # 

er=nx.erdos_renyi_graph(100,0.15)
ws=nx.watts_strogatz_graph(30,3,0.1)
ba=nx.barabasi_albert_graph(100,5)
red=nx.random_lobster(100,0.9,0.9)

nx.write_gml(red,"path.to.file")
mygraph=nx.read_gml("path.to.file")

# グラフの分析
Ejemplo n.º 15
0
def test_tetrahedral():
    # Actual coefficient is 1
    G = nx.tetrahedral_graph()
    assert_equal(average_clustering(G, trials=int(len(G) / 2)),
                 nx.average_clustering(G))
Ejemplo n.º 16
0
import networkx as nx
import matplotlib.pylab as plt
from plot_multigraph import plot_multigraph

graphs = [
  ("bull", nx.bull_graph()),
  ("chvatal", nx.chvatal_graph()),
  ("cubical", nx.cubical_graph()),
  ("desargues", nx.desargues_graph()),
  ("diamond", nx.diamond_graph()),
  ("dodecahedral", nx.dodecahedral_graph()),
  ("frucht", nx.frucht_graph()),
  ("heawood", nx.heawood_graph()),
  ("house", nx.house_graph()),
  ("house_x", nx.house_x_graph()),
  ("icosahedral", nx.icosahedral_graph()),
  ("krackhardt_kite", nx.krackhardt_kite_graph()),
  ("moebius_kantor", nx.moebius_kantor_graph()),
  ("octahedral", nx.octahedral_graph()),
  ("pappus", nx.pappus_graph()),
  ("petersen", nx.petersen_graph()),
  ("sedgewick_maze", nx.sedgewick_maze_graph()),
  ("tetrahedral", nx.tetrahedral_graph()),
  ("truncated_cube", nx.truncated_cube_graph()),
  ("truncated_tetrahedron", nx.truncated_tetrahedron_graph()),
]

plot_multigraph(graphs, 4, 5, node_size=50)
plt.savefig('graphs/small.png')

Ejemplo n.º 17
0
 def random(cls, number):
     #return nx.random_geometric_graph(number, 0.125)
     #return nx.petersen_graph()
     return nx.tetrahedral_graph()
Ejemplo n.º 18
0
        'cubical': nx.cubical_graph(),  # 3-connected planar
        'desargues': nx.desargues_graph(),  # 3-connected non-planar
        'diamond': nx.diamond_graph(),  # 2-connected planar
        'dodecahedral': nx.dodecahedral_graph(),  # 3-connected planar
        'frucht': nx.frucht_graph(),  # 3-connected planar
        'heawood': nx.heawood_graph(),  # 3-connected non-planar
        'house': nx.house_graph(),  # 2-connected planar
        'house_x': nx.house_x_graph(),  # 2-connected planar
        'icosahedral': nx.icosahedral_graph(),  # 5-connected planar
        'krackhardt': nx.krackhardt_kite_graph(),  # 1-connected planar
        'moebius': nx.moebius_kantor_graph(),  # non-planar
        'octahedral': nx.octahedral_graph(),  # 4-connected planar
        'pappus': nx.pappus_graph(),  # 3-connected non-planar
        'petersen': nx.petersen_graph(),  # 3-connected non-planar
        'sedgewick': nx.sedgewick_maze_graph(),  # 1-connected planar
        'tetrahedral': nx.tetrahedral_graph(),  # 3-connected planar
        'truncated_cube': nx.truncated_cube_graph(),  # 3-conn. planar
        'truncated_tetrahedron': nx.truncated_tetrahedron_graph(),
        # 3-connected planar
        'tutte': nx.tutte_graph()
    }  # 3-connected planar
    for g_name, g in targets.items():
        print g_name, is_planar(g)

#    g = nx.petersen_graph()
#    g = nx.frucht_graph()
#    g = nx.krackhardt_kite_graph()
#    g = nx.icosahedral_graph()
#    g = nx.tutte_graph()

#    print is_planarity(g)
    def test_properties_named_small_graphs(self):
        G = nx.bull_graph()
        assert G.number_of_nodes() == 5
        assert G.number_of_edges() == 5
        assert sorted(d for n, d in G.degree()) == [1, 1, 2, 3, 3]
        assert nx.diameter(G) == 3
        assert nx.radius(G) == 2

        G = nx.chvatal_graph()
        assert G.number_of_nodes() == 12
        assert G.number_of_edges() == 24
        assert list(d for n, d in G.degree()) == 12 * [4]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 2

        G = nx.cubical_graph()
        assert G.number_of_nodes() == 8
        assert G.number_of_edges() == 12
        assert list(d for n, d in G.degree()) == 8 * [3]
        assert nx.diameter(G) == 3
        assert nx.radius(G) == 3

        G = nx.desargues_graph()
        assert G.number_of_nodes() == 20
        assert G.number_of_edges() == 30
        assert list(d for n, d in G.degree()) == 20 * [3]

        G = nx.diamond_graph()
        assert G.number_of_nodes() == 4
        assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 1

        G = nx.dodecahedral_graph()
        assert G.number_of_nodes() == 20
        assert G.number_of_edges() == 30
        assert list(d for n, d in G.degree()) == 20 * [3]
        assert nx.diameter(G) == 5
        assert nx.radius(G) == 5

        G = nx.frucht_graph()
        assert G.number_of_nodes() == 12
        assert G.number_of_edges() == 18
        assert list(d for n, d in G.degree()) == 12 * [3]
        assert nx.diameter(G) == 4
        assert nx.radius(G) == 3

        G = nx.heawood_graph()
        assert G.number_of_nodes() == 14
        assert G.number_of_edges() == 21
        assert list(d for n, d in G.degree()) == 14 * [3]
        assert nx.diameter(G) == 3
        assert nx.radius(G) == 3

        G = nx.hoffman_singleton_graph()
        assert G.number_of_nodes() == 50
        assert G.number_of_edges() == 175
        assert list(d for n, d in G.degree()) == 50 * [7]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 2

        G = nx.house_graph()
        assert G.number_of_nodes() == 5
        assert G.number_of_edges() == 6
        assert sorted(d for n, d in G.degree()) == [2, 2, 2, 3, 3]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 2

        G = nx.house_x_graph()
        assert G.number_of_nodes() == 5
        assert G.number_of_edges() == 8
        assert sorted(d for n, d in G.degree()) == [2, 3, 3, 4, 4]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 1

        G = nx.icosahedral_graph()
        assert G.number_of_nodes() == 12
        assert G.number_of_edges() == 30
        assert (list(
            d for n, d in G.degree()) == [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5])
        assert nx.diameter(G) == 3
        assert nx.radius(G) == 3

        G = nx.krackhardt_kite_graph()
        assert G.number_of_nodes() == 10
        assert G.number_of_edges() == 18
        assert (sorted(
            d for n, d in G.degree()) == [1, 2, 3, 3, 3, 4, 4, 5, 5, 6])

        G = nx.moebius_kantor_graph()
        assert G.number_of_nodes() == 16
        assert G.number_of_edges() == 24
        assert list(d for n, d in G.degree()) == 16 * [3]
        assert nx.diameter(G) == 4

        G = nx.octahedral_graph()
        assert G.number_of_nodes() == 6
        assert G.number_of_edges() == 12
        assert list(d for n, d in G.degree()) == 6 * [4]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 2

        G = nx.pappus_graph()
        assert G.number_of_nodes() == 18
        assert G.number_of_edges() == 27
        assert list(d for n, d in G.degree()) == 18 * [3]
        assert nx.diameter(G) == 4

        G = nx.petersen_graph()
        assert G.number_of_nodes() == 10
        assert G.number_of_edges() == 15
        assert list(d for n, d in G.degree()) == 10 * [3]
        assert nx.diameter(G) == 2
        assert nx.radius(G) == 2

        G = nx.sedgewick_maze_graph()
        assert G.number_of_nodes() == 8
        assert G.number_of_edges() == 10
        assert sorted(d for n, d in G.degree()) == [1, 2, 2, 2, 3, 3, 3, 4]

        G = nx.tetrahedral_graph()
        assert G.number_of_nodes() == 4
        assert G.number_of_edges() == 6
        assert list(d for n, d in G.degree()) == [3, 3, 3, 3]
        assert nx.diameter(G) == 1
        assert nx.radius(G) == 1

        G = nx.truncated_cube_graph()
        assert G.number_of_nodes() == 24
        assert G.number_of_edges() == 36
        assert list(d for n, d in G.degree()) == 24 * [3]

        G = nx.truncated_tetrahedron_graph()
        assert G.number_of_nodes() == 12
        assert G.number_of_edges() == 18
        assert list(d for n, d in G.degree()) == 12 * [3]

        G = nx.tutte_graph()
        assert G.number_of_nodes() == 46
        assert G.number_of_edges() == 69
        assert list(d for n, d in G.degree()) == 46 * [3]

        # Test create_using with directed or multigraphs on small graphs
        pytest.raises(nx.NetworkXError,
                      nx.tutte_graph,
                      create_using=nx.DiGraph)
        MG = nx.tutte_graph(create_using=nx.MultiGraph)
        assert sorted(MG.edges()) == sorted(G.edges())
Ejemplo n.º 20
0
def test_tetrahedral():
    # Actual coefficient is 1
    G = nx.tetrahedral_graph()
    assert (average_clustering(G, trials=int(len(G) / 2)) ==
                 nx.average_clustering(G))
Ejemplo n.º 21
0
def basic_operation_tutorial():
    # Create a graph.
    G = nx.Graph()

    # Nodes.
    G.add_node(1)
    G.add_nodes_from([2, 3])

    H = nx.path_graph(10)  # Creates a graph.
    G.add_nodes_from(H)
    G.add_node(H)

    #print('G.nodes = {}.'.format(G.nodes))
    print('G.nodes = {}.'.format(list(G.nodes)))

    # Edges.
    G.add_edge(1, 2)
    e = (2, 3)
    G.add_edge(*e)  # Unpack edge tuple.

    G.add_edges_from([(1, 2), (1, 3)])

    G.add_edges_from(H.edges)

    #print('G.edges = {}.'.format(G.edges))
    print('G.edges = {}.'.format(list(G.edges)))

    # Remove all nodes and edges.
    G.clear()

    #--------------------
    G.add_edges_from([(1, 2), (1, 3)])
    G.add_node(1)
    G.add_edge(1, 2)
    G.add_node('spam')  # Adds node 'spam'.
    G.add_nodes_from('spam')  # Adds 4 nodes: 's', 'p', 'a', 'm'.
    G.add_edge(3, 'm')

    print('G.number_of_nodes() = {}.'.format(G.number_of_nodes()))
    print('G.number_of_edges() = {}.'.format(G.number_of_edges()))

    # Set-like views of the nodes, edges, neighbors (adjacencies), and degrees of nodes in a graph.
    print('G.adj[1] = {}.'.format(list(G.adj[1])))  # or G.neighbors(1).
    print('G.degree[1] = {}.'.format(
        G.degree[1]))  # The number of edges incident to 1.

    # Report the edges and degree from a subset of all nodes using an nbunch.
    # An nbunch is any of: None (meaning all nodes), a node, or an iterable container of nodes that is not itself a node in the graph.
    print("G.edges([2, 'm']) = {}.".format(G.edges([2, 'm'])))
    print('G.degree([2, 3]) = {}.'.format(G.degree([2, 3])))

    # Remove nodes and edges from the graph in a similar fashion to adding.
    G.remove_node(2)
    G.remove_nodes_from('spam')
    print('G.nodes = {}.'.format(list(G.nodes)))
    G.remove_edge(1, 3)

    # When creating a graph structure by instantiating one of the graph classes you can specify data in several formats.
    G.add_edge(1, 2)
    H = nx.DiGraph(G)  # Creates a DiGraph using the connections from G.
    print('H.edges() = {}.'.format(list(H.edges())))

    edgelist = [(0, 1), (1, 2), (2, 3)]
    H = nx.Graph(edgelist)

    #--------------------
    # Access edges and neighbors.
    print('G[1] = {}.'.format(G[1]))  # Same as G.adj[1].
    print('G[1][2] = {}.'.format(G[1][2]))  # Edge 1-2.
    print('G.edges[1, 2] = {}.'.format(G.edges[1, 2]))

    # Get/set the attributes of an edge using subscript notation if the edge already exists.
    G.add_edge(1, 3)
    G[1][3]['color'] = 'blue'
    G.edges[1, 2]['color'] = 'red'

    # Fast examination of all (node, adjacency) pairs is achieved using G.adjacency(), or G.adj.items().
    # Note that for undirected graphs, adjacency iteration sees each edge twice.
    FG = nx.Graph()
    FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2),
                                (3, 4, 0.375)])
    for n, nbrs in FG.adj.items():
        for nbr, eattr in nbrs.items():
            wt = eattr['weight']
            if wt < 0.5: print(f'({n}, {nbr}, {wt:.3})')

    # Convenient access to all edges is achieved with the edges property.
    for (u, v, wt) in FG.edges.data('weight'):
        if wt < 0.5: print(f'({u}, {v}, {wt:.3})')

    #--------------------
    # Attributes.

    # Graph attributes.
    G = nx.Graph(day='Friday')
    print('G.graph = {}.'.format(G.graph))

    G.graph['day'] = 'Monday'

    # Node attributes: add_node(), add_nodes_from(), or G.nodes.
    G.add_node(1, time='5pm')
    G.add_nodes_from([3], time='2pm')
    print('G.nodes[1] = {}.'.format(G.nodes[1]))
    G.nodes[1]['room'] = 714
    print('G.nodes.data() = {}.'.format(G.nodes.data()))

    print('G.nodes[1] = {}.'.format(
        G.nodes[1]))  # List the attributes of a node.
    print('G.nodes[1].keys() = {}.'.format(G.nodes[1].keys()))
    #print('G[1] = {}.'.format(G[1]))  # G[1] = G.adj[1].

    # Edge attributes: add_edge(), add_edges_from(), or subscript notation.
    G.add_edge(1, 2, weight=4.7)
    G.add_edges_from([(3, 4), (4, 5)], color='red')
    G.add_edges_from([(1, 2, {'color': 'blue'}), (2, 3, {'weight': 8})])
    G[1][2]['weight'] = 4.7
    G.edges[3, 4]['weight'] = 4.2
    print('G.edges.data() = {}.'.format(G.edges.data()))

    print('G.edges[3, 4] = {}.'.format(
        G.edges[3, 4]))  # List the attributes of an edge.
    print('G.edges[3, 4].keys() = {}.'.format(G.edges[3, 4].keys()))

    #--------------------
    # Directed graphs.

    DG = nx.DiGraph()
    DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)])
    print("DG.out_degree(1, weight='weight') = {}.".format(
        DG.out_degree(1, weight='weight')))
    print("DG.degree(1, weight='weight') = {}.".format(
        DG.degree(
            1, weight='weight')))  # The sum of in_degree() and out_degree().
    print('DG.successors(1) = {}.'.format(list(DG.successors(1))))
    print('DG.neighbors(1) = {}.'.format(list(DG.neighbors(1))))

    # Convert G to undirected graph.
    #H = DG.to_undirected()
    H = nx.Graph(DG)

    #--------------------
    # Multigraphs: Graphs which allow multiple edges between any pair of nodes.

    MG = nx.MultiGraph()
    #MDG = nx.MultiDiGraph()
    MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)])
    print("MG.degree(weight='weight') = {}.".format(
        dict(MG.degree(weight='weight'))))

    GG = nx.Graph()
    for n, nbrs in MG.adjacency():
        for nbr, edict in nbrs.items():
            minvalue = min([d['weight'] for d in edict.values()])
            GG.add_edge(n, nbr, weight=minvalue)
    print('nx.shortest_path(GG, 1, 3) = {}.'.format(nx.shortest_path(GG, 1,
                                                                     3)))

    #--------------------
    # Classic graph operations:
    """
	subgraph(G, nbunch):		induced subgraph view of G on nodes in nbunch
	union(G1,G2):				graph union
	disjoint_union(G1,G2):		graph union assuming all nodes are different
	cartesian_product(G1,G2):	return Cartesian product graph
	compose(G1,G2):				combine graphs identifying nodes common to both
	complement(G):				graph complement
	create_empty_copy(G):		return an empty copy of the same graph class
	to_undirected(G):			return an undirected representation of G
	to_directed(G):				return a directed representation of G
	"""

    #--------------------
    # Graph generators.

    # Use a call to one of the classic small graphs:
    petersen = nx.petersen_graph()
    tutte = nx.tutte_graph()
    maze = nx.sedgewick_maze_graph()
    tet = nx.tetrahedral_graph()

    # Use a (constructive) generator for a classic graph:
    K_5 = nx.complete_graph(5)
    K_3_5 = nx.complete_bipartite_graph(3, 5)
    barbell = nx.barbell_graph(10, 10)
    lollipop = nx.lollipop_graph(10, 20)

    # Use a stochastic graph generator:
    er = nx.erdos_renyi_graph(100, 0.15)
    ws = nx.watts_strogatz_graph(30, 3, 0.1)
    ba = nx.barabasi_albert_graph(100, 5)
    red = nx.random_lobster(100, 0.9, 0.9)

    #--------------------
    # Read a graph stored in a file using common graph formats, such as edge lists, adjacency lists, GML, GraphML, pickle, LEDA and others.

    nx.write_gml(red, './test.gml')
    mygraph = nx.read_gml('./test.gml')
Ejemplo n.º 22
0
    node_color='firebrick',
    alpha=0.8,
)

#%%
#有向图
DG = nx.DiGraph()
DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)])
print(DG.out_degree(1, weight='weight'))
print(DG.degree(1, weight='weight'))
print(list(DG.successors(1)))
print(list(DG.neighbors(1)))
#有向图和无向图的转换

#%%
#其他生成图的方法

petersen = nx.petersen_graph()
tutte = nx.tutte_graph()
maze = nx.sedgewick_maze_graph()
tet = nx.tetrahedral_graph()
K_5 = nx.complete_graph(5)
K_3_5 = nx.complete_bipartite_graph(3, 5)
barbell = nx.barbell_graph(10, 10)
lollipop = nx.lollipop_graph(10, 20)
#%%
plt.subplot(111)
nx.draw(K_3_5, with_labels=True, node_color='firebrick', alpha=0.8)

#%%
import networkx as nx
import matplotlib.pylab as plt
from plot_multigraph import plot_multigraph

graphs = [
    ("bull", nx.bull_graph()),
    ("chvatal", nx.chvatal_graph()),
    ("cubical", nx.cubical_graph()),
    ("desargues", nx.desargues_graph()),
    ("diamond", nx.diamond_graph()),
    ("dodecahedral", nx.dodecahedral_graph()),
    ("frucht", nx.frucht_graph()),
    ("heawood", nx.heawood_graph()),
    ("house", nx.house_graph()),
    ("house_x", nx.house_x_graph()),
    ("icosahedral", nx.icosahedral_graph()),
    ("krackhardt_kite", nx.krackhardt_kite_graph()),
    ("moebius_kantor", nx.moebius_kantor_graph()),
    ("octahedral", nx.octahedral_graph()),
    ("pappus", nx.pappus_graph()),
    ("petersen", nx.petersen_graph()),
    ("sedgewick_maze", nx.sedgewick_maze_graph()),
    ("tetrahedral", nx.tetrahedral_graph()),
    ("truncated_cube", nx.truncated_cube_graph()),
    ("truncated_tetrahedron", nx.truncated_tetrahedron_graph()),
]

plot_multigraph(graphs, 4, 5, node_size=50)
plt.savefig('graphs/small.png')
Ejemplo n.º 24
0
def small_graphs():
    print("Make small graph")
    G = nx.make_small_graph(
        ["adjacencylist", "C_4", 4, [[2, 4], [1, 3], [2, 4], [1, 3]]])
    draw_graph(G)
    G = nx.make_small_graph(
        ["adjacencylist", "C_4", 4, [[2, 4], [3], [4], []]])
    draw_graph(G)
    G = nx.make_small_graph(
        ["edgelist", "C_4", 4, [[1, 2], [3, 4], [2, 3], [4, 1]]])
    draw_graph(G)
    print("LCF graph")
    G = nx.LCF_graph(6, [3, -3], 3)
    draw_graph(G)
    G = nx.LCF_graph(14, [5, -5], 7)
    draw_graph(G)
    print("Bull graph")
    G = nx.bull_graph()
    draw_graph(G)
    print("Chvátal graph")
    G = nx.chvatal_graph()
    draw_graph(G)
    print("Cubical graph")
    G = nx.cubical_graph()
    draw_graph(G)
    print("Desargues graph")
    G = nx.desargues_graph()
    draw_graph(G)
    print("Diamond graph")
    G = nx.diamond_graph()
    draw_graph(G)
    print("Dodechaedral graph")
    G = nx.dodecahedral_graph()
    draw_graph(G)
    print("Frucht graph")
    G = nx.frucht_graph()
    draw_graph(G)
    print("Heawood graph")
    G = nx.heawood_graph()
    draw_graph(G)
    print("House graph")
    G = nx.house_graph()
    draw_graph(G)
    print("House X graph")
    G = nx.house_x_graph()
    draw_graph(G)
    print("Icosahedral graph")
    G = nx.icosahedral_graph()
    draw_graph(G)
    print("Krackhardt kite graph")
    G = nx.krackhardt_kite_graph()
    draw_graph(G)
    print("Moebius kantor graph")
    G = nx.moebius_kantor_graph()
    draw_graph(G)
    print("Octahedral graph")
    G = nx.octahedral_graph()
    draw_graph(G)
    print("Pappus graph")
    G = nx.pappus_graph()
    draw_graph(G)
    print("Petersen graph")
    G = nx.petersen_graph()
    draw_graph(G)
    print("Sedgewick maze graph")
    G = nx.sedgewick_maze_graph()
    draw_graph(G)
    print("Tetrahedral graph")
    G = nx.tetrahedral_graph()
    draw_graph(G)
    print("Truncated cube graph")
    G = nx.truncated_cube_graph()
    draw_graph(G)
    print("Truncated tetrahedron graph")
    G = nx.truncated_tetrahedron_graph()
    draw_graph(G)
    print("Tutte graph")
    G = nx.tutte_graph()
    draw_graph(G)
# [1,2,3,4]
GH6.edges()
# [((2,3),(3,4)]
# Retourne un graphe avec des aretes qui sont soit dans G soit dans H mais pas les deux


##### Graphes classiques #####

petersen=nx.petersen_graph()
petersen.nodes()
#[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
petersen.edges()
#[(0, 1), (0, 4), (0, 5), (1, 2), (1, 6), (2, 3), (2, 7), (3, 8), (3, 4), (4, 9), (5, 8), (5, 7), (6, 8), (6, 9), (7, 9)]


tutte=nx.tutte_graph()
tutte.nodes()
tutte.edges()

maze=nx.sedgewick_maze_graph()
maze.nodes()
maze.edges()

tet=nx.tetrahedral_graph()
tet.nodes()
#[0, 1, 2, 3]
tet.edges()
#[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

#Remarque : il existe de nombreux generateurs de graphes