Ejemplo n.º 1
0
def test_sparse_boxes_WITH_OFFSET():
    block_mask = np.zeros((5, 6, 7), dtype=bool)

    # since mask offset is 20, this spans 3 bricks (physical: 20-70, logical: 0-90)
    block_mask[0, 0, 0:5] = True

    # spans a single brick (physical: 30-60, logical: 30-60)
    block_mask[0, 1, 1:4] = True

    block_mask_resolution = 10

    # MASK STARTS AT OFFSET
    mask_box_start = np.array([0, 10, 20])
    mask_box_stop = mask_box_start + 10 * np.array(block_mask.shape)

    block_mask_box = (mask_box_start, mask_box_stop)
    brick_grid = Grid((10, 10, 30), (0, 0, 0))

    sparse_block_mask = SparseBlockMask(block_mask, block_mask_box,
                                        block_mask_resolution)
    logical_boxes = sparse_block_mask.sparse_boxes(brick_grid,
                                                   return_logical_boxes=True)

    assert (logical_boxes == [[[0, 10, 0], [10, 20, 30]],
                              [[0, 10, 30], [10, 20, 60]],
                              [[0, 10, 60], [10, 20, 90]],
                              [[0, 20, 30], [10, 30, 60]]]).all()

    physical_boxes = sparse_block_mask.sparse_boxes(brick_grid,
                                                    return_logical_boxes=False)

    assert (physical_boxes == [[[0, 10, 20], [10, 20, 30]],
                               [[0, 10, 30], [10, 20, 60]],
                               [[0, 10, 60], [10, 20, 70]],
                               [[0, 20, 30], [10, 30, 60]]]).all()
Ejemplo n.º 2
0
def test_sparse_boxes_NO_OFFSET():
    block_mask = np.zeros((5, 6, 7), dtype=bool)

    block_mask[0, 0, 0:5] = True

    block_mask[0, 1, 1:4] = True

    block_mask_resolution = 10

    # MASK STARTS AT ORIGIN (NO OFFSET)
    mask_box_start = np.array([0, 0, 0])
    mask_box_stop = mask_box_start + 10 * np.array(block_mask.shape)

    block_mask_box = (mask_box_start, mask_box_stop)
    brick_grid = Grid((10, 10, 30))

    sparse_block_mask = SparseBlockMask(block_mask, block_mask_box,
                                        block_mask_resolution)
    logical_boxes = sparse_block_mask.sparse_boxes(brick_grid,
                                                   return_logical_boxes=True)
    assert (logical_boxes == [[[0, 0, 0], [10, 10, 30]],
                              [[0, 0, 30], [10, 10, 60]],
                              [[0, 10, 0], [10, 20, 30]],
                              [[0, 10, 30], [10, 20, 60]]]).all()

    physical_boxes = sparse_block_mask.sparse_boxes(brick_grid,
                                                    return_logical_boxes=False)
    assert (physical_boxes == [[[0, 0, 0], [10, 10, 30]],
                               [[0, 0, 30], [10, 10, 50]],
                               [[0, 10, 10], [10, 20, 30]],
                               [[0, 10, 30], [10, 20, 40]]]).all()
Ejemplo n.º 3
0
    def init_boxes(self, volume_service, roi):
        if not roi["name"]:
            boxes = boxes_from_grid(volume_service.bounding_box_zyx,
                                    volume_service.preferred_message_shape,
                                    clipped=True)
            return np.array([*boxes])

        base_service = volume_service.base_service

        if not roi["server"] or not roi["uuid"]:
            assert isinstance(base_service, DvidVolumeService), \
                "Since you aren't using a DVID input source, you must specify the ROI server and uuid."

        roi["server"] = (roi["server"] or volume_service.server)
        roi["uuid"] = (roi["uuid"] or volume_service.uuid)

        if roi["scale"] is not None:
            scale = roi["scale"]
        elif isinstance(volume_service, ScaledVolumeService):
            scale = volume_service.scale_delta
            assert scale <= 5, \
                "The 'roi' option doesn't support volumes downscaled beyond level 5"
        else:
            scale = 0

        brick_shape = volume_service.preferred_message_shape
        assert not (brick_shape % 2**(5-scale)).any(), \
            "If using an ROI, select a brick shape that is divisible by 32"

        seg_box = volume_service.bounding_box_zyx
        seg_box = round_box(seg_box, 2**(5 - scale))
        seg_box_s0 = seg_box * 2**scale
        seg_box_s5 = seg_box // 2**(5 - scale)

        with Timer(
                f"Fetching mask for ROI '{roi['name']}' ({seg_box_s0[:, ::-1].tolist()})",
                logger):
            roi_mask_s5, _ = fetch_roi(roi["server"],
                                       roi["uuid"],
                                       roi["name"],
                                       format='mask',
                                       mask_box=seg_box_s5)

        # SBM 'full-res' corresponds to the input service voxels, not necessarily scale-0.
        sbm = SparseBlockMask(roi_mask_s5, seg_box, 2**(5 - scale))
        boxes = sbm.sparse_boxes(brick_shape)

        # Clip boxes to the true (not rounded) bounding box
        boxes[:, 0] = np.maximum(boxes[:, 0],
                                 volume_service.bounding_box_zyx[0])
        boxes[:, 1] = np.minimum(boxes[:, 1],
                                 volume_service.bounding_box_zyx[1])
        return boxes
Ejemplo n.º 4
0
    def init_boxes(self, volume_service, roi):
        if not roi:
            boxes = boxes_from_grid(volume_service.bounding_box_zyx,
                                    volume_service.preferred_message_shape,
                                    clipped=True)
            return np.array([*boxes])

        base_service = volume_service.base_service
        assert isinstance(base_service, DvidVolumeService), \
            "Can't specify an ROI unless you're using a dvid input"

        assert isinstance(volume_service, (ScaledVolumeService, DvidVolumeService)), \
            "The 'roi' option doesn't support adapters other than 'rescale-level'"
        scale = 0
        if isinstance(volume_service, ScaledVolumeService):
            scale = volume_service.scale_delta
            assert scale <= 5, \
                "The 'roi' option doesn't support volumes downscaled beyond level 5"

        server, uuid, _seg_instance = base_service.instance_triple

        brick_shape = volume_service.preferred_message_shape
        assert not (brick_shape % 2**(5-scale)).any(), \
            "If using an ROI, select a brick shape that is divisible by 32"

        seg_box = volume_service.bounding_box_zyx
        seg_box = round_box(seg_box, 2**(5 - scale))
        seg_box_s0 = seg_box * 2**scale
        seg_box_s5 = seg_box // 2**(5 - scale)

        with Timer(
                f"Fetching mask for ROI '{roi}' ({seg_box_s0[:, ::-1].tolist()})",
                logger):
            roi_mask_s5, _ = fetch_roi(server,
                                       uuid,
                                       roi,
                                       format='mask',
                                       mask_box=seg_box_s5)

        # SBM 'full-res' corresponds to the input service voxels, not necessarily scale-0.
        sbm = SparseBlockMask(roi_mask_s5, seg_box, 2**(5 - scale))
        boxes = sbm.sparse_boxes(brick_shape)

        # Clip boxes to the true (not rounded) bounding box
        boxes[:, 0] = np.maximum(boxes[:, 0],
                                 volume_service.bounding_box_zyx[0])
        boxes[:, 1] = np.minimum(boxes[:, 1],
                                 volume_service.bounding_box_zyx[1])
        return boxes
Ejemplo n.º 5
0
    def init_boxes(self, volume_service, roi, chunk_shape_s0):
        """
        Return a set of bounding boxes to tile the given ROI.
        Scale 0 of the volume service should correspond to full-res data,
        which is 32x higher-res than ROI resolution.
        """
        if not roi["name"]:
            boxes = boxes_from_grid(volume_service.bounding_box_zyx,
                                    chunk_shape_s0,
                                    clipped=True)
            return np.array([*boxes])

        base_service = volume_service.base_service

        if not roi["server"] or not roi["uuid"]:
            assert isinstance(base_service, DvidVolumeService), \
                "Since you aren't using a DVID input source, you must specify the ROI server and uuid."

        roi["server"] = (roi["server"] or volume_service.server)
        roi["uuid"] = (roi["uuid"] or volume_service.uuid)

        assert not (chunk_shape_s0 % 2**5).any(), \
            "If using an ROI, select a chunk shape that is divisible by 32"

        seg_box_s0 = volume_service.bounding_box_zyx
        seg_box_s0 = round_box(seg_box_s0, 2**5)
        seg_box_s5 = seg_box_s0 // 2**5

        with Timer(
                f"Fetching mask for ROI '{roi['name']}' ({seg_box_s0[:, ::-1].tolist()})",
                logger):
            roi_mask_s5, _ = fetch_roi(roi["server"],
                                       roi["uuid"],
                                       roi["name"],
                                       format='mask',
                                       mask_box=seg_box_s5)

        # SBM 'full-res' corresponds to the input service voxels, not necessarily scale-0.
        sbm = SparseBlockMask(roi_mask_s5, seg_box_s0, 2**5)
        boxes = sbm.sparse_boxes(chunk_shape_s0)

        # Clip boxes to the true (not rounded) bounding box
        boxes[:, 0] = np.maximum(boxes[:, 0],
                                 volume_service.bounding_box_zyx[0])
        boxes[:, 1] = np.minimum(boxes[:, 1],
                                 volume_service.bounding_box_zyx[1])
        return boxes
Ejemplo n.º 6
0
    def init_boxes(self, volume_service, roi):
        if not roi["name"]:
            boxes = boxes_from_grid(volume_service.bounding_box_zyx,
                                    volume_service.preferred_message_shape,
                                    clipped=True)
            return np.array([*boxes])

        server, uuid, roi_name = roi["server"], roi["uuid"], roi["name"]
        roi_scale = roi["relative-scale"]

        brick_shape = volume_service.preferred_message_shape
        assert not (brick_shape % 2**roi_scale).any(), \
            "If using an ROI, select a brick shape that is divisible by 32"

        seg_box = volume_service.bounding_box_zyx
        seg_box = round_box(seg_box, 2**roi_scale)
        seg_box_s5 = seg_box // 2**roi_scale

        with Timer(
                f"Fetching mask for ROI '{roi_name}' ({seg_box[:, ::-1].tolist()})",
                logger):
            roi_mask_s5, _ = fetch_roi(server,
                                       uuid,
                                       roi_name,
                                       format='mask',
                                       mask_box=seg_box_s5)

        # SBM 'full-res' corresponds to the input service voxels, not necessarily scale-0.
        sbm = SparseBlockMask(roi_mask_s5, seg_box, 2**roi_scale)
        boxes = sbm.sparse_boxes(brick_shape)

        # Clip boxes to the true (not rounded) bounding box
        boxes[:, 0] = np.maximum(boxes[:, 0],
                                 volume_service.bounding_box_zyx[0])
        boxes[:, 1] = np.minimum(boxes[:, 1],
                                 volume_service.bounding_box_zyx[1])
        return boxes