Ejemplo n.º 1
0
    def test_parallel_layer(self):
        input_layer = layers.Input((3, 8, 8))
        parallel_layer = layers.join(
            [[
                layers.Convolution((11, 5, 5)),
            ], [
                layers.Convolution((10, 3, 3)),
                layers.Convolution((5, 3, 3)),
            ]],
            layers.Concatenate(),
        )
        output_layer = layers.MaxPooling((2, 2))

        conn = layers.join(input_layer, parallel_layer)
        output_connection = layers.join(conn, output_layer)

        x = T.tensor4()
        y = theano.function([x], conn.output(x))

        x_tensor4 = asfloat(np.random.random((10, 3, 8, 8)))
        output = y(x_tensor4)
        self.assertEqual(output.shape, (10, 11 + 5, 4, 4))

        output_function = theano.function([x], output_connection.output(x))
        final_output = output_function(x_tensor4)
        self.assertEqual(final_output.shape, (10, 11 + 5, 2, 2))
Ejemplo n.º 2
0
def Fire(s_1x1, e_1x1, e_3x3, name):
    return layers.join(
        layers.Convolution(
            (1, 1, s_1x1),
            padding='SAME',
            name=name + '/squeeze1x1'
        ),
        layers.Relu(),
        layers.parallel([
            layers.Convolution(
                (1, 1, e_1x1),
                padding='SAME',
                name=name + '/expand1x1'
            ),
            layers.Relu(),
        ], [
            layers.Convolution(
                (3, 3, e_3x3),
                padding='SAME',
                name=name + '/expand3x3'
            ),
            layers.Relu(),
        ]),
        layers.Concatenate(),
    )
Ejemplo n.º 3
0
    def test_subnetwork_in_conv_network(self):
        network = layers.join(
            layers.Input((28, 28, 1)),
            layers.Convolution((3, 3, 8)) >> layers.Relu(),
            layers.Convolution((3, 3, 8)) >> layers.Relu(),
            layers.MaxPooling((2, 2)),
            layers.Reshape(),
            layers.Softmax(1),
        )

        self.assertEqual(8, len(network))
        self.assertTrue(network.is_sequential())
        self.assertShapesEqual(network.input_shape, (None, 28, 28, 1))
        self.assertShapesEqual(network.output_shape, (None, 1))

        expected_order = [
            layers.Input,
            layers.Convolution,
            layers.Relu,
            layers.Convolution,
            layers.Relu,
            layers.MaxPooling,
            layers.Reshape,
            layers.Softmax,
        ]
        for actual_layer, expected_layer in zip(network, expected_order):
            self.assertIsInstance(actual_layer, expected_layer)
Ejemplo n.º 4
0
def squeezenet():
    """
    SqueezeNet network architecture with random parameters.
    Parameters can be loaded using ``neupy.storage`` module.

    SqueezeNet has roughly 1.2 million parameters. It is almost
    50 times less than in AlexNet. Parameters can be stored as 5Mb
    file.

    Examples
    --------
    >>> from neupy import architectures
    >>> squeezenet = architectures.squeezenet()
    >>> squeezenet
    (?, 227, 227, 3) -> [... 67 layers ...] -> (?, 1000)
    >>>
    >>> from neupy import algorithms
    >>> optimizer = algorithms.Momentum(squeezenet)

    See Also
    --------
    :architecture:`vgg16` : VGG16 network
    :architecture:`vgg19` : VGG19 network
    :architecture:`resnet50` : ResNet50 network

    References
    ----------
    SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
    and <0.5MB model size
    https://arxiv.org/abs/1602.07360
    """
    return layers.join(
        layers.Input((227, 227, 3)),

        layers.Convolution((7, 7, 96), stride=(2, 2),
                           padding='VALID', name='conv1'),
        layers.Relu(),
        layers.MaxPooling((3, 3), stride=(2, 2)),

        Fire(16, 64, 64, name='fire2'),
        Fire(16, 64, 64, name='fire3'),
        Fire(32, 128, 128, name='fire4'),
        layers.MaxPooling((2, 2)),

        Fire(32, 128, 128, name='fire5'),
        Fire(48, 192, 192, name='fire6'),
        Fire(48, 192, 192, name='fire7'),
        Fire(64, 256, 256, name='fire8'),
        layers.MaxPooling((2, 2)),

        Fire(64, 256, 256, name='fire9'),
        layers.Dropout(0.5),

        layers.Convolution((1, 1, 1000), name='conv10'),
        layers.GlobalPooling('avg'),
        layers.Reshape(),
        layers.Softmax(),
    )
Ejemplo n.º 5
0
 def test_parallel_with_joined_connections(self):
     # Should work without errors
     layers.join(
         [
             layers.Convolution((11, 5, 5)) > layers.Relu(),
             layers.Convolution((10, 3, 3)) > layers.Relu(),
         ],
         layers.Concatenate() > layers.Relu(),
     )
Ejemplo n.º 6
0
    def test_networks_with_complex_parallel_relations(self):
        input_layer = layers.Input((5, 5, 3))
        network = layers.join(
            layers.parallel([
                layers.Convolution((1, 1, 8)),
            ], [
                layers.Convolution((1, 1, 4)),
                layers.parallel(
                    layers.Convolution((1, 3, 2), padding='same'),
                    layers.Convolution((3, 1, 2), padding='same'),
                ),
            ], [
                layers.Convolution((1, 1, 8)),
                layers.Convolution((3, 3, 4), padding='same'),
                layers.parallel(
                    layers.Convolution((1, 3, 2), padding='same'),
                    layers.Convolution((3, 1, 2), padding='same'),
                )
            ], [
                layers.MaxPooling((3, 3), padding='same', stride=(1, 1)),
                layers.Convolution((1, 1, 8)),
            ]),
            layers.Concatenate(),
        )
        self.assertShapesEqual(network.input_shape, [None, None, None, None])
        self.assertShapesEqual(network.output_shape, (None, None, None, None))

        # Connect them at the end, because we need to make
        # sure tha parallel networks defined without input shapes
        network = layers.join(input_layer, network)
        self.assertShapesEqual(network.output_shape, (None, 5, 5, 24))
Ejemplo n.º 7
0
    def test_conv_invalid_padding_exception(self):
        error_msg = "greater or equal to zero"
        with self.assertRaisesRegexp(ValueError, error_msg):
            layers.Convolution((1, 3, 3), padding=-1)

        error_msg = "Tuple .+ greater or equal to zero"
        with self.assertRaisesRegexp(ValueError, error_msg):
            layers.Convolution((1, 3, 3), padding=(2, -1))

        with self.assertRaisesRegexp(ValueError, "invalid string value"):
            layers.Convolution((1, 3, 3), padding='NOT_SAME')

        with self.assertRaisesRegexp(ValueError, "contains two elements"):
            layers.Convolution((1, 3, 3), padding=(3, 3, 3))
Ejemplo n.º 8
0
    def test_gated_average_layer_multi_dimensional_inputs(self):
        input_layer = layers.Input((5, 5, 1))
        network = layers.join([
            input_layer > layers.Reshape() > layers.Softmax(2),
            input_layer > layers.Convolution((2, 2, 3)),
            input_layer > layers.Convolution((2, 2, 3)),
        ], layers.GatedAverage())

        self.assertEqual(network.input_shape, (5, 5, 1))
        self.assertEqual(network.output_shape, (4, 4, 3))

        random_input = asfloat(np.random.random((8, 5, 5, 1)))
        actual_output = self.eval(network.output(random_input))

        self.assertEqual(actual_output.shape, (8, 4, 4, 3))
Ejemplo n.º 9
0
    def test_invalid_arguments_exceptions(self):
        network = layers.join(
            layers.Input((3, 28, 28)),
            layers.Convolution((8, 3, 3), name='conv') > layers.Relu(),
            layers.Reshape(),
            layers.Softmax(10),
        )
        image = np.ones((3, 28, 28))

        with self.assertRaisesRegexp(ValueError, 'Invalid image shape'):
            plots.saliency_map(network, np.ones((28, 28)))

        with self.assertRaisesRegexp(ValueError, 'invalid value'):
            plots.saliency_map(network, image, mode='invalid-mode')

        with self.assertRaises(InvalidConnection):
            new_network = network > [
                layers.Sigmoid(1), layers.Sigmoid(2)
            ]
            plots.saliency_map(new_network, image)

        with self.assertRaises(InvalidConnection):
            new_network = [
                layers.Input((3, 28, 28)), layers.Input((3, 28, 28))
            ] > network.start('conv')
            plots.saliency_map(new_network, image)

        with self.assertRaisesRegexp(InvalidConnection, 'invalid input shape'):
            plots.saliency_map(layers.Input(10) > layers.Relu(), image)
Ejemplo n.º 10
0
    def test_invalid_border_mode(self):
        invalid_border_modes = ('invalid mode', -10, (10, -5))

        for border_mode in invalid_border_modes:
            msg = "Input border mode: {}".format(border_mode)
            with self.assertRaises(ValueError, msg=msg):
                layers.Convolution((1, 2, 3), border_mode=border_mode)
Ejemplo n.º 11
0
    def test_gated_average_layer_multi_dimensional_inputs(self):
        input_layer = layers.Input((1, 5, 5))
        network = layers.join([
            input_layer > layers.Reshape() > layers.Softmax(2),
            input_layer > layers.Convolution((3, 2, 2)),
            input_layer > layers.Convolution((3, 2, 2)),
        ], layers.GatedAverage())

        self.assertEqual(network.input_shape, (1, 5, 5))
        self.assertEqual(network.output_shape, (3, 4, 4))

        predict = network.compile()
        random_input = asfloat(np.random.random((8, 1, 5, 5)))
        actual_output = predict(random_input)

        self.assertEqual(actual_output.shape, (8, 3, 4, 4))
    def test_invalid_padding(self):
        invalid_paddings = ('invalid mode', -10, (10, -5))

        for padding in invalid_paddings:
            msg = "Input border mode: {}".format(padding)
            with self.assertRaises(ValueError, msg=msg):
                layers.Convolution((1, 2, 3), padding=padding)
Ejemplo n.º 13
0
 def test_convolution_repr(self):
     layer = layers.Convolution((3, 3, 10), name='conv')
     self.assertEqual(
         str(layer),
         ("Convolution((3, 3, 10), padding='VALID', stride=(1, 1), "
          "dilation=(1, 1), weight=HeNormal(gain=2), bias=Constant(0), "
          "name='conv')"))
Ejemplo n.º 14
0
    def test_concatenate_conv_layers(self):
        network = layers.join(
            layers.Input((28, 28, 3)),
            layers.parallel(
                layers.Convolution((5, 5, 7)),
                layers.join(
                    layers.Convolution((3, 3, 1)),
                    layers.Convolution((3, 3, 4)),
                ),
            ), layers.Concatenate(axis=-1))

        self.assertShapesEqual((None, 24, 24, 11), network.output_shape)

        x_tensor4 = asfloat(np.random.random((5, 28, 28, 3)))
        actual_output = self.eval(network.output(x_tensor4))

        self.assertEqual((5, 24, 24, 11), actual_output.shape)
Ejemplo n.º 15
0
 def test_conv_output_shape_when_input_unknown(self):
     block = layers.join(
         layers.Convolution((3, 3, 32)),
         layers.Relu(),
         layers.BatchNorm(),
     )
     self.assertShapesEqual(block.input_shape, None)
     self.assertShapesEqual(block.output_shape, (None, None, None, 32))
Ejemplo n.º 16
0
def Fire(s_1x1, e_1x1, e_3x3, name):
    return layers.join(
        layers.Convolution((s_1x1, 1, 1),
                           padding='half',
                           name=name + '/squeeze1x1'),
        layers.Relu(),
        [[
            layers.Convolution(
                (e_1x1, 1, 1), padding='half', name=name + '/expand1x1'),
            layers.Relu(),
        ],
         [
             layers.Convolution(
                 (e_3x3, 3, 3), padding='half', name=name + '/expand3x3'),
             layers.Relu(),
         ]],
        layers.Concatenate(),
    )
Ejemplo n.º 17
0
    def test_connection_inside_connection_conv(self):
        connection = layers.join(
            layers.Input((28, 28, 1)),
            layers.Convolution((3, 3, 8)) > layers.Relu(),
            layers.Convolution((3, 3, 8)) > layers.Relu(),
            layers.MaxPooling((2, 2)),
            layers.Reshape(),
            layers.Softmax(1),
        )

        self.assertEqual(8, len(connection))

        expected_order = [
            layers.Input, layers.Convolution, layers.Relu, layers.Convolution,
            layers.Relu, layers.MaxPooling, layers.Reshape, layers.Softmax
        ]
        for actual_layer, expected_layer in zip(connection, expected_order):
            self.assertIsInstance(actual_layer, expected_layer)
Ejemplo n.º 18
0
    def test_connection_inside_connection_conv(self):
        connection = [
            layers.Input((1, 28, 28)),
            layers.Convolution((8, 3, 3)) > layers.Relu(),
            layers.Convolution((8, 3, 3)) > layers.Relu(),
            layers.MaxPooling((2, 2)),
            layers.Reshape(),
            layers.Softmax(1),
        ]

        network = algorithms.GradientDescent(connection)
        self.assertEqual(8, len(network.layers))

        self.assertIsInstance(network.layers[1], layers.Convolution)
        self.assertIsInstance(network.layers[2], layers.Relu)
        self.assertIsInstance(network.layers[3], layers.Convolution)
        self.assertIsInstance(network.layers[4], layers.Relu)
        self.assertIsInstance(network.layers[5], layers.MaxPooling)
Ejemplo n.º 19
0
 def test_repeat_network(self):
     block = layers.join(
         layers.Convolution((3, 3, 32)),
         layers.Relu(),
         layers.BatchNorm(),
     )
     network = layers.repeat(block, n=5)
     self.assertEqual(len(network), 15)
     self.assertShapesEqual(network.output_shape, (None, None, None, 32))
Ejemplo n.º 20
0
    def test_global_pooling_late_shape_init(self):
        network = layers.join(
            layers.Convolution((3, 3, 12)),
            layers.GlobalPooling('max'),
        )
        self.assertShapesEqual(network.output_shape, (None, None))

        network = layers.join(layers.Input((10, 10, 1)), network)
        self.assertShapesEqual(network.output_shape, (None, 12))
Ejemplo n.º 21
0
 def setUp(self):
     super(SaliencyMapTestCase, self).setUp()
     self.network = layers.join(
         layers.Input((28, 28, 3)),
         layers.Convolution((3, 3, 8), name='conv') >> layers.Relu(),
         layers.Reshape(),
         layers.Softmax(10),
     )
     self.image = np.ones((28, 28, 3))
Ejemplo n.º 22
0
    def test_gated_average_layer_multi_dimensional_inputs(self):
        network = layers.join(
            layers.Input((5, 5, 1)),
            layers.parallel(
                layers.Reshape() >> layers.Softmax(2),
                layers.Convolution((2, 2, 3)),
                layers.Convolution((2, 2, 3)),
            ),
            layers.GatedAverage(),
        )

        self.assertShapesEqual(network.input_shape, (None, 5, 5, 1))
        self.assertShapesEqual(network.output_shape, (None, 4, 4, 3))

        random_input = asfloat(np.random.random((8, 5, 5, 1)))
        actual_output = self.eval(network.output(random_input))

        self.assertEqual(actual_output.shape, (8, 4, 4, 3))
Ejemplo n.º 23
0
    def test_concatenate_conv_layers(self):
        input_layer = layers.Input((28, 28, 3))
        hidden_layer_1 = layers.Convolution((5, 5, 7))
        hidden_layer_21 = layers.Convolution((3, 3, 1))
        hidden_layer_22 = layers.Convolution((3, 3, 4))
        concat_layer = layers.Concatenate(axis=-1)

        connection = layers.join(input_layer, hidden_layer_1, concat_layer)
        connection = layers.join(input_layer, hidden_layer_21, hidden_layer_22,
                                 concat_layer)
        connection.initialize()

        self.assertEqual((24, 24, 11), concat_layer.output_shape)

        x_tensor4 = asfloat(np.random.random((5, 28, 28, 3)))
        actual_output = self.eval(connection.output(x_tensor4))

        self.assertEqual((5, 24, 24, 11), actual_output.shape)
Ejemplo n.º 24
0
    def test_prelu_output_by_spatial_input(self):
        network = layers.join(
            layers.Input((10, 10, 3)),
            layers.Convolution((3, 3, 5)),
            layers.PRelu(alpha=0.25, alpha_axes=(1, 3)),
        )

        X = asfloat(np.random.random((1, 10, 10, 3)))
        actual_output = self.eval(network.output(X))
        self.assertEqual(actual_output.shape, (1, 8, 8, 5))
Ejemplo n.º 25
0
    def test_convolution_params(self):
        inp = layers.Input((5, 5, 1))
        conv = layers.Convolution((2, 2, 6))

        # Propagate data through the network in
        # order to trigger initialization
        (inp >> conv).outputs

        self.assertEqual((2, 2, 1, 6), self.get_shape(conv.weight))
        self.assertEqual((6,), self.get_shape(conv.bias))
Ejemplo n.º 26
0
def create_VIN(input_image_shape=(8, 8, 2), n_hidden_filters=150,
               n_state_filters=10, k=10):

    SamePadConvolution = partial(layers.Convolution, padding='SAME', bias=None)

    R = layers.join(
        layers.Input(input_image_shape, name='grid-input'),
        layers.Convolution((3, 3, n_hidden_filters),
                           padding='SAME',
                           weight=init.Normal(),
                           bias=init.Normal()),
        SamePadConvolution((1, 1, 1), weight=init.Normal()),
    )

    # Create shared weights
    q_weight = random_weight((3, 3, 1, n_state_filters))
    fb_weight = random_weight((3, 3, 1, n_state_filters))

    Q = R > SamePadConvolution((3, 3, n_state_filters), weight=q_weight)

    for i in range(k):
        V = Q > ChannelGlobalMaxPooling()
        Q = layers.join(
            # Convolve R and V separately and then add outputs together with
            # the Elementwise layer. This part of the code looks different
            # from the one that was used in the original VIN repo, but
            # it does the same operation.
            #
            # conv(x, w) == (conv(x1, w1) + conv(x2, w2))
            # where, x = concat(x1, x2)
            #        w = concat(w1, w2)
            #
            # See code sample from Github Gist: https://bit.ly/2zm3ntN
            [[
                R,
                SamePadConvolution((3, 3, n_state_filters), weight=q_weight)
            ], [
                V,
                SamePadConvolution((3, 3, n_state_filters), weight=fb_weight)
            ]],
            layers.Elementwise(merge_function=tf.add),
        )

    input_state_1 = layers.Input(UNKNOWN, name='state-1-input')
    input_state_2 = layers.Input(UNKNOWN, name='state-2-input')

    # Select the conv-net channels at the state position (S1, S2)
    VIN = [Q, input_state_1, input_state_2] > SelectValueAtStatePosition()

    # Set up softmax layer that predicts actions base on (S1, S2)
    # position. Each action encodes specific direction:
    # N, S, E, W, NE, NW, SE, SW (in the same order)
    VIN = VIN > layers.Softmax(8, bias=None, weight=init.Normal())

    return VIN
Ejemplo n.º 27
0
    def test_convolution_params(self):
        weight_shape = (6, 1, 2, 2)
        bias_shape = (6, )

        input_layer = layers.Input((1, 5, 5))
        conv_layer = layers.Convolution((6, 2, 2))

        connection = input_layer > conv_layer
        conv_layer.initialize()

        self.assertEqual(weight_shape, conv_layer.weight.get_value().shape)
        self.assertEqual(bias_shape, conv_layer.bias.get_value().shape)
Ejemplo n.º 28
0
    def test_conv_without_bias(self):
        inp = layers.Input((5, 5, 1))
        conv = layers.Convolution((3, 3, 1), bias=None, weight=1)

        network = inp >> conv
        network.outputs

        x = asfloat(np.ones((1, 5, 5, 1)))
        expected_output = 9 * np.ones((1, 3, 3, 1))
        actual_output = self.eval(network.output(x))

        np.testing.assert_array_almost_equal(expected_output, actual_output)
    def test_conv_without_bias(self):
        input_layer = layers.Input((1, 5, 5))
        conv = layers.Convolution((1, 3, 3), bias=None, weight=1)

        connection = input_layer > conv
        connection.initialize()

        x = asfloat(np.ones((1, 1, 5, 5)))
        expected_output = 9 * np.ones((1, 1, 3, 3))
        actual_output = connection.output(x).eval()

        np.testing.assert_array_almost_equal(expected_output, actual_output)
Ejemplo n.º 30
0
 def test_parallel_layer_with_residual_connections(self):
     connection = layers.join(
         layers.Input((3, 8, 8)),
         [[
             layers.Convolution((7, 1, 1)),
             layers.Relu()
         ], [
             # Residual connection
         ]],
         layers.Concatenate(),
     )
     self.assertEqual(connection.output_shape, (10, 8, 8))