Ejemplo n.º 1
0
def loop(model: Layer,
            images: List[Tensor],
             labels: List[Tensor],
             loss: Loss,
             optimizer: Optimizer = None) -> None:
    correct = 0         # Track number of correct predictions.
    total_loss = 0.0    # Track total loss.
    
    with tqdm.trange(len(images)) as t:
        for i in t:
            predicted = model.forward(images[i])             # Predict.
            if argmax(predicted) == argmax(labels[i]):       # Check for
                correct += 1                                 # correctness.
            total_loss += loss.loss(predicted, labels[i])    # Compute loss.
    
            # If we're training, backpropagate gradient and update weights.
            if optimizer is not None:
                gradient = loss.gradient(predicted, labels[i])
                model.backward(gradient)
                optimizer.step(model)
    
            # And update our metrics in the progress bar.
            avg_loss = total_loss / (i + 1)
            acc = correct / (i + 1)
            t.set_description(f"mnist loss: {avg_loss:.3f} acc: {acc:.3f}")
Ejemplo n.º 2
0
    def fizzbuzz_accuracy(low: int, hi: int, net: Layer) -> float:
        num_correct = 0
        for n in range(low, hi):
            x = binary_encode(n)
            predicted = argmax(net.forward(x))
            actual = argmax(fizz_buzz_encode(n))
            if predicted == actual:
                num_correct += 1

        return num_correct / (hi - low)