Ejemplo n.º 1
0
def test_predict_should_predict_in_test_mode():
    tape_fit = TapeCallbackFunction()
    tape_transform = TapeCallbackFunction()
    p = Pipeline([
        TestOnlyWrapper(
            CallbackWrapper(MultiplyByN(2), tape_transform, tape_fit)),
        TrainOnlyWrapper(
            CallbackWrapper(MultiplyByN(4), tape_transform, tape_fit))
    ])

    outputs = p.predict(np.array([1, 1]))

    assert np.array_equal(outputs, np.array([2, 2]))
Ejemplo n.º 2
0
def test_predict_should_transform_with_initial_is_train_mode_after_predict():
    tape_fit = TapeCallbackFunction()
    tape_transform = TapeCallbackFunction()
    p = Pipeline([
        TestOnlyWrapper(
            CallbackWrapper(MultiplyByN(2), tape_transform, tape_fit)),
        TrainOnlyWrapper(
            CallbackWrapper(MultiplyByN(4), tape_transform, tape_fit))
    ])

    p.predict(np.array([1, 1]))
    outputs = p.transform(np.array([1, 1]))

    assert np.array_equal(outputs, np.array([4, 4]))
Ejemplo n.º 3
0
def test_handle_predict_should_predict_in_test_mode():
    tape_fit = TapeCallbackFunction()
    tape_transform = TapeCallbackFunction()
    p = Pipeline([
        TestOnlyWrapper(
            CallbackWrapper(MultiplyByN(2), tape_transform, tape_fit)),
        TrainOnlyWrapper(
            CallbackWrapper(MultiplyByN(4), tape_transform, tape_fit))
    ])

    data_container = p.handle_predict(data_container=DataContainer(
        data_inputs=np.array([1, 1]), expected_outputs=np.array([1, 1])),
                                      context=ExecutionContext())

    assert np.array_equal(data_container.data_inputs, np.array([2, 2]))
Ejemplo n.º 4
0
def main():
    def accuracy(data_inputs, expected_outputs):
        return np.mean(
            np.argmax(np.array(data_inputs), axis=1) == np.argmax(
                np.array(expected_outputs), axis=1))

    # load the dataset
    df = read_csv('data/winequality-white.csv', sep=';')
    data_inputs = df.values
    data_inputs[:, -1] = data_inputs[:, -1] - 1
    n_features = data_inputs.shape[1] - 1
    n_classes = 10

    p = Pipeline([
        TrainOnlyWrapper(DataShuffler()),
        ColumnTransformerInputOutput(
            input_columns=[(
                [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ToNumpy(np.float32)
            )],
            output_columns=[(11, Identity())]
        ),
        OutputTransformerWrapper(PlotDistribution(column=-1)),
        MiniBatchSequentialPipeline([
            Tensorflow2ModelStep(
                create_model=create_model,
                create_loss=create_loss,
                create_optimizer=create_optimizer
            ) \
                .set_hyperparams(HyperparameterSamples({
                'n_dense_layers': 2,
                'input_dim': n_features,
                'optimizer': 'adam',
                'activation': 'relu',
                'kernel_initializer': 'he_uniform',
                'learning_rate': 0.01,
                'hidden_dim': 20,
                'n_classes': 3
            })).set_hyperparams_space(HyperparameterSpace({
                'n_dense_layers': RandInt(2, 4),
                'hidden_dim_layer_multiplier': Uniform(0.30, 1),
                'input_dim': FixedHyperparameter(n_features),
                'optimizer': Choice([
                    OPTIMIZERS.ADAM.value,
                    OPTIMIZERS.SGD.value,
                    OPTIMIZERS.ADAGRAD.value
                ]),
                'activation': Choice([
                    ACTIVATIONS.RELU.value,
                    ACTIVATIONS.TANH.value,
                    ACTIVATIONS.SIGMOID.value,
                    ACTIVATIONS.ELU.value,
                ]),
                'kernel_initializer': Choice([
                    KERNEL_INITIALIZERS.GLOROT_NORMAL.value,
                    KERNEL_INITIALIZERS.GLOROT_UNIFORM.value,
                    KERNEL_INITIALIZERS.HE_UNIFORM.value
                ]),
                'learning_rate': LogUniform(0.005, 0.01),
                'hidden_dim': RandInt(3, 80),
                'n_classes': FixedHyperparameter(n_classes)
            }))
        ], batch_size=33),
        OutputTransformerWrapper(Pipeline([
            ExpandDim(),
            OneHotEncoder(nb_columns=n_classes, name='classes')
        ]))
    ])

    auto_ml = AutoML(
        pipeline=p,
        hyperparams_repository=InMemoryHyperparamsRepository(
            cache_folder='trials'),
        hyperparams_optimizer=RandomSearchHyperparameterSelectionStrategy(),
        validation_splitter=ValidationSplitter(test_size=0.30),
        scoring_callback=ScoringCallback(accuracy,
                                         higher_score_is_better=True),
        callbacks=[
            MetricCallback(
                name='classification_report_imbalanced_metric',
                metric_function=classificaiton_report_imbalanced_metric,
                higher_score_is_better=True),
            MetricCallback(name='f1',
                           metric_function=f1_score_weighted,
                           higher_score_is_better=True),
            MetricCallback(name='recall',
                           metric_function=recall_score_weighted,
                           higher_score_is_better=True),
            MetricCallback(name='precision',
                           metric_function=precision_score_weighted,
                           higher_score_is_better=True),
            EarlyStoppingCallback(max_epochs_without_improvement=3)
        ],
        n_trials=200,
        refit_trial=True,
        epochs=75)

    auto_ml = auto_ml.fit(data_inputs=data_inputs)
Ejemplo n.º 5
0
 def __init__(self, wrapped, seed=None):
     Pipeline.__init__(self,
                       [TrainOnlyWrapper(DataShuffler(seed=seed)), wrapped])
Ejemplo n.º 6
0
def test_step_repr_representation_works_correctly():
    output = repr(TrainOnlyWrapper(SomeTruncableStep()))
    assert output == """TrainOnlyWrapper(SomeTruncableStep([
Ejemplo n.º 7
0
def main(chosen_device):
    exercice_number = 1
    print('exercice {}\n=================='.format(exercice_number))

    data_inputs, expected_outputs = generate_data(
        # See: https://github.com/guillaume-chevalier/seq2seq-signal-prediction/blob/master/datasets.py
        exercice_number=exercice_number,
        n_samples=None,
        window_size_past=None,
        window_size_future=None)

    print('data_inputs shape: {} => (n_samples, window_size_past, input_dim)'.
          format(data_inputs.shape))
    print(
        'expected_outputs shape: {} => (n_samples, window_size_future, output_dim)'
        .format(expected_outputs.shape))

    sequence_length = data_inputs.shape[1]
    input_dim = data_inputs.shape[2]
    output_dim = expected_outputs.shape[2]

    batch_size = 100
    epochs = 3
    validation_size = 0.15
    max_plotted_validation_predictions = 10

    seq2seq_pipeline_hyperparams = HyperparameterSamples({
        'hidden_dim':
        100,
        'layers_stacked_count':
        2,
        'lambda_loss_amount':
        0.0003,
        'learning_rate':
        0.006,
        'window_size_future':
        sequence_length,
        'output_dim':
        output_dim,
        'input_dim':
        input_dim
    })
    feature_0_metric = metric_3d_to_2d_wrapper(mean_squared_error)
    metrics = {'mse': feature_0_metric}

    signal_prediction_pipeline = Pipeline([
        ForEachDataInput(MeanStdNormalizer()),
        ToNumpy(),
        PlotPredictionsWrapper(
            Tensorflow2ModelStep(
                # See: https://github.com/Neuraxio/Neuraxle-TensorFlow
                create_model=create_model,
                create_loss=create_loss,
                create_optimizer=create_optimizer,
                expected_outputs_dtype=tf.dtypes.float32,
                data_inputs_dtype=tf.dtypes.float32,
                print_loss=True).set_hyperparams(seq2seq_pipeline_hyperparams))
    ]).set_name('SignalPrediction')

    pipeline = Pipeline([
        EpochRepeater(ValidationSplitWrapper(
            MetricsWrapper(Pipeline([
                TrainOnlyWrapper(DataShuffler()),
                MiniBatchSequentialPipeline([
                    MetricsWrapper(signal_prediction_pipeline,
                                   metrics=metrics,
                                   name='batch_metrics')
                ],
                                            batch_size=batch_size)
            ]),
                           metrics=metrics,
                           name='epoch_metrics',
                           print_metrics=True),
            test_size=validation_size,
            scoring_function=feature_0_metric),
                      epochs=epochs)
    ])

    pipeline, outputs = pipeline.fit_transform(data_inputs, expected_outputs)

    plot_metrics(pipeline=pipeline, exercice_number=exercice_number)
    plot_predictions(data_inputs, expected_outputs, pipeline,
                     max_plotted_validation_predictions)