Ejemplo n.º 1
0
def neuro_start(inputs, targets, training):
    #initializes the neural network
    network=neuro.setup_network(inputs)

    #The number of repetitions that you will
    #be training your network with
    training_reps= training

    #trains your neural network
    neuro.train(network, inputs, targets, training_reps)

    total = 0
    correct = 0

    for i in range(1,10):
        for x in range(1,10):
            pred = neuro.predict(network, [i+x])
            #rounds the predicted value to either 0 or 1
            #print '{}  == pred {}'.format(i+x,pred)
            pred = np.round(pred)
            if (i+x)%2 == pred:
                correct+= 1
            total += 1
    percent = (correct/total) * 100
    #print 'with training: {}'.format(training_reps)
    #print 'correct: {}\n total: {} \n {:.2f}%'.format(correct, total, (correct/total) * 100)
    return training_reps, percent, correct, total
Ejemplo n.º 2
0
# if inputs[-1] == '':
# 	inputs.pop()

# newT = []
# targets = open('myTest.csv', 'r')
# targets = targets.read()
# targets = targets.split('\n')
# if targets[-1] == '':
# 	targets.pop()
# for i in targets:
# 	newT.append(i.split(','))
# 	print(float(newT))

reps = 1000
network = []
netowrk = neuro.setup_network(inputs)
neuro.train(network, inputs, targets, reps)
neuro.writeNetworkToFile('myNetwork.net', network)

count = 0
myGrid = open('myNetwork.csv', 'w+')


def search(x, y):
    if grid[x][y] == 2:
        print('Solved... This is a Maze!')
        return True
    elif grid[x][y] == 1:
        print('Wall! at %d, %d' % (x, y))
        return False
    elif grid[x][y] == 3: