Ejemplo n.º 1
0
def main(template_path, forest_path, synapses_path, connections_path, config_path):
    
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()

    env = Env(comm=comm, config_file=config_path, template_paths=template_path)

    h('objref nil, pc, tlog, Vlog, spikelog')
    h.load_file("nrngui.hoc")
    h.xopen ("./tests/rn.hoc")
    h.xopen(template_path+'/HICAPCell.hoc')
    
    pop_name = "HCC"
    gid = 1043250
    (trees_dict,_) = read_tree_selection (forest_path, pop_name, [gid], comm=env.comm)

    (_, tree) = next(trees_dict)
    v_init = -67
    
    template_class = getattr(h, "HICAPCell")

    passive_test(template_class, tree, v_init)
    ap_test(template_class, tree, v_init)
    ap_rate_test(template_class, tree, v_init)
    fi_test(template_class, tree, v_init)

    if synapses_path and connections_path:
        synapses_iter = read_cell_attribute_selection (synapses_path, pop_name, [gid],
                                                       "Synapse Attributes", comm=env.comm)
        (_, synapses_dict) = next(synapses_iter)
        connections = read_graph_selection(file_name=connections_path, selection=[gid],
                                            namespaces=['Synapses', 'Connections'], comm=env.comm)

        synapse_test(template_class, gid, tree, synapses_dict, connections, v_init, env)
Ejemplo n.º 2
0
  802644, 395919, 540509, 746873, 278368, 540518, 409447, 147304, 802666, 16235, 802668,
  933748, 876521, 16249, 16258, 417771, 671626, 540557, 540559, 671632, 409491, 985753,
  409496, 147371, 671661, 409521, 540594, 933813, 671676, 409542, 802759, 898380,
  540620, 933838, 278482, 147411, 671705, 671706, 147421, 802784, 16353, 278498, 16358,
  802793, 671722, 802795, 540652, 671725, 16366, 933871, 671729, 278514, 16375, 898388,
  409594, 147455, 147457, 540674, 16390, 933896, 671753, 898392, 278546, 540693, 278550,
  278551, 671770, 147488, 16417, 16425, 147500, 409645, 147504, 671796, 308575, 16444,
  592565, 278592, 147524, 540743, 409675, 671820, 16462, 409679, 802903, 409693, 540768,
  540769, 278630, 671847, 147565, 671854, 802935, 671869, 147583, 147587, 671881,
  934026, 671890, 540820, 278685, 540832, 802982, 671911, 934056, 540841, 147629,
  278702, 278704, 854728, 671923, 278712, 960746, 540858, 409788, 409793, 540878,
  540880, 803026, 409814, 147686, 16618, 147691, 934126, 409847, 409853, 803072, 16642,
  409861, 147718, 16649, 395991, 934163, 803096, 278809, 409882, 147739, 540957, 934175,
  147749, 934182, 540967, 409897, 278826, 934188, 16691, 16692, 707608, 540984, 177546]

gid_range = sorted([ gid for gid in gid_set if gid % size == rank ])
print("rank %i: gid_range = %s" % (rank, str(gid_range)))
connectivity_file_path='/oasis/scratch/comet/iraikov/temp_project/dentate/Full_Scale_Control/DG_Connections_Full_Scale_20190824.h5'
(graph, a) = read_graph_selection(connectivity_file_path, selection=gid_range, projections=[('MPP', 'GC'), ('MC', 'GC'), ('BC', 'GC')],
                                  comm=comm, namespaces=['Synapses', 'Connections'])

print(a)
for dst, edges in graph['GC']['MPP']:
    presyn_gids, _ = edges
    print("rank %d: %d %s edges for node %d" % (rank, len(presyn_gids), "MPP", dst))

for dst, edges in graph['GC']['MC']:
    presyn_gids, _ = edges
    print("rank %d: %d %s edges for node %d" % (rank, len(presyn_gids), "MC", dst))

def main(config, coordinates, gid, field_width, peak_rate, input_features_path,
         input_features_namespaces, output_features_namespace,
         output_weights_path, output_features_path, initial_weights_path,
         reference_weights_path, h5types_path, synapse_name,
         initial_weights_namespace, reference_weights_namespace,
         output_weights_namespace, reference_weights_are_delta,
         connections_path, optimize_method, destination, sources, arena_id,
         max_delta_weight, field_width_scale, max_iter, verbose, dry_run,
         plot):
    """
    :param config: str (path to .yaml file)
    :param coordinates: tuple of float
    :param gid: int
    :param field_width: float
    :param peak_rate: float
    :param input_features_path: str (path to .h5 file)
    :param input_features_namespaces: str
    :param output_features_namespace: str
    :param output_weights_path: str (path to .h5 file)
    :param output_features_path: str (path to .h5 file)
    :param initial_weights_path: str (path to .h5 file)
    :param reference_weights_path: str (path to .h5 file)
    :param h5types_path: str (path to .h5 file)
    :param synapse_name: str
    :param initial_weights_namespace: str
    :param output_weights_namespace: str
    :param reference_weights_are_delta: bool
    :param connections_path: str (path to .h5 file)
    :param destination: str (population name)
    :param sources: list of str (population name)
    :param arena_id: str
    :param max_delta_weight: float
    :param field_width_scale: float
    :param max_iter: int
    :param verbose: bool
    :param dry_run: bool
    :param interactive: bool
    :param plot: bool
    """
    utils.config_logging(verbose)
    logger = utils.get_script_logger(__file__)

    env = Env(config_file=config)

    if not dry_run:
        if output_weights_path is None:
            raise RuntimeError(
                'Missing required argument: output_weights_path.')
        if not os.path.isfile(output_weights_path):
            if initial_weights_path is not None and os.path.isfile(
                    initial_weights_path):
                input_file_path = initial_weights_path
            elif h5types_path is not None and os.path.isfile(h5types_path):
                input_file_path = h5types_path
            else:
                raise RuntimeError(
                    'Missing required source for h5types: either an initial_weights_path or an '
                    'h5types_path must be provided.')
            with h5py.File(output_weights_path, 'a') as output_file:
                with h5py.File(input_file_path, 'r') as input_file:
                    input_file.copy('/H5Types', output_file)

    this_input_features_namespaces = [
        '%s %s' % (input_features_namespace, arena_id)
        for input_features_namespace in input_features_namespaces
    ]
    features_attr_names = ['Arena Rate Map']
    spatial_resolution = env.stimulus_config['Spatial Resolution']  # cm
    arena = env.stimulus_config['Arena'][arena_id]
    default_run_vel = arena.properties['default run velocity']  # cm/s
    arena_x, arena_y = stimulus.get_2D_arena_spatial_mesh(
        arena, spatial_resolution)
    dim_x = len(arena_x)
    dim_y = len(arena_y)

    if gid is None:
        target_gids = []
    else:
        target_gids = [gid]

    dst_input_features = defaultdict(dict)
    num_fields = len(coordinates)
    this_field_width = np.array([field_width] * num_fields, dtype=np.float32)
    this_scaled_field_width = np.array([field_width * field_width_scale] *
                                       num_fields,
                                       dtype=np.float32)
    this_peak_rate = np.array([peak_rate] * num_fields, dtype=np.float32)
    this_x0 = np.array([x for x, y in coordinates], dtype=np.float32)
    this_y0 = np.array([y for x, y in coordinates], dtype=np.float32)
    this_rate_map = np.asarray(get_rate_map(this_x0, this_y0, this_field_width,
                                            this_peak_rate, arena_x, arena_y),
                               dtype=np.float32)
    target_map = np.asarray(get_rate_map(this_x0, this_y0,
                                         this_scaled_field_width,
                                         this_peak_rate, arena_x, arena_y),
                            dtype=np.float32)
    selectivity_type = env.selectivity_types['place']
    dst_input_features[destination][target_gid] = {
        'Selectivity Type': np.array([selectivity_type], dtype=np.uint8),
        'Num Fields': np.array([num_fields], dtype=np.uint8),
        'Field Width': this_field_width,
        'Peak Rate': this_peak_rate,
        'X Offset': this_x0,
        'Y Offset': this_y0,
        'Arena Rate Map': this_rate_map.ravel()
    }

    initial_weights_by_syn_id_dict = dict()
    selection = [target_gid]
    if initial_weights_path is not None:
        initial_weights_iter = \
            read_cell_attribute_selection(initial_weights_path, destination, namespace=initial_weights_namespace,
                                          selection=selection)
        syn_weight_attr_dict = dict(initial_weights_iter)

        syn_ids = syn_weight_attr_dict[target_gid]['syn_id']
        weights = syn_weight_attr_dict[target_gid][synapse_name]

        for (syn_id, weight) in zip(syn_ids, weights):
            initial_weights_by_syn_id_dict[int(syn_id)] = float(weight)

        logger.info(
            'destination: %s; gid %i; read initial synaptic weights for %i synapses'
            % (destination, target_gid, len(initial_weights_by_syn_id_dict)))

    reference_weights_by_syn_id_dict = None
    if reference_weights_path is not None:
        reference_weights_by_syn_id_dict = dict()
        reference_weights_iter = \
            read_cell_attribute_selection(reference_weights_path, destination, namespace=reference_weights_namespace,
                                          selection=selection)
        syn_weight_attr_dict = dict(reference_weights_iter)

        syn_ids = syn_weight_attr_dict[target_gid]['syn_id']
        weights = syn_weight_attr_dict[target_gid][synapse_name]

        for (syn_id, weight) in zip(syn_ids, weights):
            reference_weights_by_syn_id_dict[int(syn_id)] = float(weight)

        logger.info(
            'destination: %s; gid %i; read reference synaptic weights for %i synapses'
            % (destination, target_gid, len(reference_weights_by_syn_id_dict)))

    source_gid_set_dict = defaultdict(set)
    syn_ids_by_source_gid_dict = defaultdict(list)
    initial_weights_by_source_gid_dict = dict()
    if reference_weights_by_syn_id_dict is None:
        reference_weights_by_source_gid_dict = None
    else:
        reference_weights_by_source_gid_dict = dict()
    (graph, edge_attr_info) = read_graph_selection(file_name=connections_path,
                                                   selection=[target_gid],
                                                   namespaces=['Synapses'])
    syn_id_attr_index = None
    for source, edge_iter in viewitems(graph[destination]):
        if source not in sources:
            continue
        this_edge_attr_info = edge_attr_info[destination][source]
        if 'Synapses' in this_edge_attr_info and \
           'syn_id' in this_edge_attr_info['Synapses']:
            syn_id_attr_index = this_edge_attr_info['Synapses']['syn_id']
        for (destination_gid, edges) in edge_iter:
            assert destination_gid == target_gid
            source_gids, edge_attrs = edges
            syn_ids = edge_attrs['Synapses'][syn_id_attr_index]
            count = 0
            for i in range(len(source_gids)):
                this_source_gid = int(source_gids[i])
                source_gid_set_dict[source].add(this_source_gid)
                this_syn_id = int(syn_ids[i])
                if this_syn_id not in initial_weights_by_syn_id_dict:
                    this_weight = \
                        env.connection_config[destination][source].mechanisms['default'][synapse_name]['weight']
                    initial_weights_by_syn_id_dict[this_syn_id] = this_weight
                syn_ids_by_source_gid_dict[this_source_gid].append(this_syn_id)
                if this_source_gid not in initial_weights_by_source_gid_dict:
                    initial_weights_by_source_gid_dict[this_source_gid] = \
                        initial_weights_by_syn_id_dict[this_syn_id]
                    if reference_weights_by_source_gid_dict is not None:
                        reference_weights_by_source_gid_dict[this_source_gid] = \
                            reference_weights_by_syn_id_dict[this_syn_id]
                count += 1
            logger.info(
                'destination: %s; gid %i; set initial synaptic weights for %d inputs from source population '
                '%s' % (destination, destination_gid, count, source))

    syn_count_by_source_gid_dict = dict()
    for source_gid in syn_ids_by_source_gid_dict:
        syn_count_by_source_gid_dict[source_gid] = len(
            syn_ids_by_source_gid_dict[source_gid])

    input_rate_maps_by_source_gid_dict = dict()
    for source in sources:
        source_gids = list(source_gid_set_dict[source])
        for input_features_namespace in this_input_features_namespaces:
            input_features_iter = read_cell_attribute_selection(
                input_features_path,
                source,
                namespace=input_features_namespace,
                mask=set(features_attr_names),
                selection=source_gids)
            count = 0
            for gid, attr_dict in input_features_iter:
                input_rate_maps_by_source_gid_dict[gid] = attr_dict[
                    'Arena Rate Map'].reshape((dim_x, dim_y))
                count += 1
            logger.info('Read %s feature data for %i cells in population %s' %
                        (input_features_namespace, count, source))

    if is_interactive:
        context.update(locals())

    normalized_delta_weights_dict, arena_LS_map = \
        synapses.generate_structured_weights(target_map=target_map,
                                             initial_weight_dict=initial_weights_by_source_gid_dict,
                                             input_rate_map_dict=input_rate_maps_by_source_gid_dict,
                                             syn_count_dict=syn_count_by_source_gid_dict,
                                             max_delta_weight=max_delta_weight, arena_x=arena_x, arena_y=arena_y,
                                             reference_weight_dict=reference_weights_by_source_gid_dict,
                                             reference_weights_are_delta=reference_weights_are_delta,
                                             reference_weights_namespace=reference_weights_namespace,
                                             optimize_method=optimize_method, verbose=verbose, plot=plot)

    output_syn_ids = np.empty(len(initial_weights_by_syn_id_dict),
                              dtype='uint32')
    output_weights = np.empty(len(initial_weights_by_syn_id_dict),
                              dtype='float32')
    i = 0
    for source_gid, this_weight in viewitems(normalized_delta_weights_dict):
        for syn_id in syn_ids_by_source_gid_dict[source_gid]:
            output_syn_ids[i] = syn_id
            output_weights[i] = this_weight
            i += 1
    output_weights_dict = {
        target_gid: {
            'syn_id': output_syn_ids,
            synapse_name: output_weights
        }
    }

    logger.info('destination: %s; gid %i; generated %s for %i synapses' %
                (destination, target_gid, output_weights_namespace,
                 len(output_weights)))

    if not dry_run:
        this_output_weights_namespace = '%s %s' % (output_weights_namespace,
                                                   arena_id)
        logger.info('Destination: %s; appending %s ...' %
                    (destination, this_output_weights_namespace))
        append_cell_attributes(output_weights_path,
                               destination,
                               output_weights_dict,
                               namespace=this_output_weights_namespace)
        logger.info('Destination: %s; appended %s' %
                    (destination, this_output_weights_namespace))
        output_weights_dict.clear()
        if output_features_path is not None:
            this_output_features_namespace = '%s %s' % (
                output_features_namespace, arena_id)
            cell_attr_dict = dst_input_features[destination]
            cell_attr_dict[target_gid]['Arena State Map'] = np.asarray(
                arena_LS_map.ravel(), dtype=np.float32)
            logger.info('Destination: %s; appending %s ...' %
                        (destination, this_output_features_namespace))
            append_cell_attributes(output_features_path,
                                   destination,
                                   cell_attr_dict,
                                   namespace=this_output_features_namespace)

    if is_interactive:
        context.update(locals())
Ejemplo n.º 4
0
def main(config_file, config_prefix, input_path, population, template_paths,
         dataset_prefix, results_path, results_file_id, results_namespace_id,
         v_init, io_size, chunk_size, value_chunk_size, write_size, verbose):

    utils.config_logging(verbose)
    logger = utils.get_script_logger(os.path.basename(__file__))

    comm = MPI.COMM_WORLD
    rank = comm.rank

    if rank == 0:
        logger.info('%i ranks have been allocated' % comm.size)

    if io_size == -1:
        io_size = comm.size

    if results_file_id is None:
        if rank == 0:
            result_file_id = uuid.uuid4()
        results_file_id = comm.bcast(results_file_id, root=0)
    if results_namespace_id is None:
        results_namespace_id = 'Cell Clamp Results'
    comm = MPI.COMM_WORLD
    np.seterr(all='raise')
    verbose = True
    params = dict(locals())
    env = Env(**params)
    configure_hoc_env(env)
    if rank == 0:
        io_utils.mkout(env, env.results_file_path)
    env.comm.barrier()
    env.cell_selection = {}
    template_class = load_cell_template(env, population)

    if input_path is not None:
        env.data_file_path = input_path
        env.load_celltypes()

    synapse_config = env.celltypes[population]['synapses']

    weights_namespaces = []
    if 'weights' in synapse_config:
        has_weights = synapse_config['weights']
        if has_weights:
            if 'weights namespace' in synapse_config:
                weights_namespaces.append(synapse_config['weights namespace'])
            elif 'weights namespaces' in synapse_config:
                weights_namespaces.extend(synapse_config['weights namespaces'])
            else:
                weights_namespaces.append('Weights')
    else:
        has_weights = False

    start_time = time.time()
    count = 0
    gid_count = 0
    attr_dict = {}
    if input_path is None:
        cell_path = env.data_file_path
        connectivity_path = env.connectivity_file_path
    else:
        cell_path = input_path
        connectivity_path = input_path

    for gid, morph_dict in NeuroH5TreeGen(cell_path,
                                          population,
                                          io_size=io_size,
                                          comm=env.comm,
                                          topology=True):
        local_time = time.time()
        if gid is not None:
            color = 0
            comm0 = comm.Split(color, 0)

            logger.info('Rank %i gid: %i' % (rank, gid))
            cell_dict = {'morph': morph_dict}
            synapses_iter = read_cell_attribute_selection(cell_path,
                                                          population, [gid],
                                                          'Synapse Attributes',
                                                          comm=comm0)
            _, synapse_dict = next(synapses_iter)
            cell_dict['synapse'] = synapse_dict

            if has_weights:
                cell_weights_iters = [
                    read_cell_attribute_selection(cell_path,
                                                  population, [gid],
                                                  weights_namespace,
                                                  comm=comm0)
                    for weights_namespace in weights_namespaces
                ]
                weight_dict = dict(
                    zip_longest(weights_namespaces, cell_weights_iters))
                cell_dict['weight'] = weight_dict

            (graph,
             a) = read_graph_selection(file_name=connectivity_path,
                                       selection=[gid],
                                       namespaces=['Synapses', 'Connections'],
                                       comm=comm0)
            cell_dict['connectivity'] = (graph, a)

            gid_count += 1

            attr_dict[gid] = {}
            attr_dict[gid].update(
                cell_clamp.measure_passive(gid,
                                           population,
                                           v_init,
                                           env,
                                           cell_dict=cell_dict))
            attr_dict[gid].update(
                cell_clamp.measure_ap(gid,
                                      population,
                                      v_init,
                                      env,
                                      cell_dict=cell_dict))
            attr_dict[gid].update(
                cell_clamp.measure_ap_rate(gid,
                                           population,
                                           v_init,
                                           env,
                                           cell_dict=cell_dict))
            attr_dict[gid].update(
                cell_clamp.measure_fi(gid,
                                      population,
                                      v_init,
                                      env,
                                      cell_dict=cell_dict))

        else:
            color = 1
            comm0 = comm.Split(color, 0)
            logger.info('Rank %i gid is None' % (rank))
        comm0.Free()

        count += 1
        if (results_path is not None) and (count % write_size == 0):
            append_cell_attributes(env.results_file_path,
                                   population,
                                   attr_dict,
                                   namespace=env.results_namespace_id,
                                   comm=env.comm,
                                   io_size=env.io_size,
                                   chunk_size=chunk_size,
                                   value_chunk_size=value_chunk_size)
            attr_dict = {}

    env.comm.barrier()
    if results_path is not None:
        append_cell_attributes(env.results_file_path,
                               population,
                               attr_dict,
                               namespace=env.results_namespace_id,
                               comm=env.comm,
                               io_size=env.io_size,
                               chunk_size=chunk_size,
                               value_chunk_size=value_chunk_size)
    global_count = env.comm.gather(gid_count, root=0)

    MPI.Finalize()
Ejemplo n.º 5
0
def write_connection_selection(env,
                               write_selection_file_path,
                               populations=None,
                               write_kwds={}):
    """
    Loads NeuroH5 connectivity file, and writes the corresponding
    synapse and network connection mechanisms for the selected postsynaptic cells.

    :param env: an instance of the `dentate.Env` class
    """

    if 'comm' not in write_kwds:
        write_kwds['comm'] = env.comm
    if 'io_size' not in write_kwds:
        write_kwds['io_size'] = env.io_size

    connectivity_file_path = env.connectivity_file_path
    forest_file_path = env.forest_file_path
    rank = int(env.comm.Get_rank())
    nhosts = int(env.comm.Get_size())
    syn_attrs = env.synapse_attributes

    if populations is None:
        pop_names = sorted(env.cell_selection.keys())
    else:
        pop_names = populations

    input_sources = {pop_name: set([]) for pop_name in env.celltypes}

    for (postsyn_name, presyn_names) in sorted(viewitems(env.projection_dict)):

        if rank == 0:
            logger.info('*** Writing connection selection of population %s' %
                        (postsyn_name))

        if postsyn_name not in pop_names:
            continue

        gid_range = [
            gid for gid in env.cell_selection[postsyn_name]
            if gid % nhosts == rank
        ]

        synapse_config = env.celltypes[postsyn_name]['synapses']

        if 'weights' in synapse_config:
            has_weights = synapse_config['weights']
        else:
            has_weights = False

        weights_namespaces = []
        if 'weights' in synapse_config:
            has_weights = synapse_config['weights']
            if has_weights:
                if 'weights namespace' in synapse_config:
                    weights_namespaces.append(
                        synapse_config['weights namespace'])
                elif 'weights namespaces' in synapse_config:
                    weights_namespaces.extend(
                        synapse_config['weights namespaces'])
                else:
                    weights_namespaces.append('Weights')
        else:
            has_weights = False

        if rank == 0:
            logger.info('*** Reading synaptic attributes of population %s' %
                        (postsyn_name))

        syn_attributes_iter = read_cell_attribute_selection(
            forest_file_path,
            postsyn_name,
            selection=gid_range,
            namespace='Synapse Attributes',
            comm=env.comm)

        syn_attributes_output_dict = dict(list(syn_attributes_iter))
        write_cell_attributes(write_selection_file_path,
                              postsyn_name,
                              syn_attributes_output_dict,
                              namespace='Synapse Attributes',
                              **write_kwds)
        del syn_attributes_output_dict
        del syn_attributes_iter

        if has_weights:
            for weights_namespace in sorted(weights_namespaces):
                weight_attributes_iter = read_cell_attribute_selection(
                    forest_file_path,
                    postsyn_name,
                    selection=gid_range,
                    namespace=weights_namespace,
                    comm=env.comm)
                weight_attributes_output_dict = dict(
                    list(weight_attributes_iter))
                write_cell_attributes(write_selection_file_path,
                                      postsyn_name,
                                      weight_attributes_output_dict,
                                      namespace=weights_namespace,
                                      **write_kwds)
                del weight_attributes_output_dict
                del weight_attributes_iter

        logger.info(
            '*** Rank %i: reading connectivity selection from file %s for postsynaptic population: %s: selection: %s'
            % (rank, connectivity_file_path, postsyn_name, str(gid_range)))

        (graph, attr_info) = read_graph_selection(connectivity_file_path, selection=gid_range, \
                                                  projections=[ (presyn_name, postsyn_name) for presyn_name in sorted(presyn_names) ], \
                                                  comm=env.comm, namespaces=['Synapses', 'Connections'])

        for presyn_name in sorted(presyn_names):
            gid_dict = {}
            edge_count = 0
            node_count = 0
            if postsyn_name in graph:

                if postsyn_name in attr_info and presyn_name in attr_info[
                        postsyn_name]:
                    edge_attr_info = attr_info[postsyn_name][presyn_name]
                else:
                    raise RuntimeError('write_connection_selection: missing edge attributes for projection %s -> %s' % \
                                       (presyn_name, postsyn_name))

                if 'Synapses' in edge_attr_info and \
                        'syn_id' in edge_attr_info['Synapses'] and \
                        'Connections' in edge_attr_info and \
                        'distance' in edge_attr_info['Connections']:
                    syn_id_attr_index = edge_attr_info['Synapses']['syn_id']
                    distance_attr_index = edge_attr_info['Connections'][
                        'distance']
                else:
                    raise RuntimeError('write_connection_selection: missing edge attributes for projection %s -> %s' % \
                                           (presyn_name, postsyn_name))

                edge_iter = compose_iter(lambda edgeset: input_sources[presyn_name].update(edgeset[1][0]), \
                                         graph[postsyn_name][presyn_name])
                for (postsyn_gid, edges) in edge_iter:

                    presyn_gids, edge_attrs = edges
                    edge_syn_ids = edge_attrs['Synapses'][syn_id_attr_index]
                    edge_dists = edge_attrs['Connections'][distance_attr_index]

                    gid_dict[postsyn_gid] = (presyn_gids, {
                        'Synapses': {
                            'syn_id': edge_syn_ids
                        },
                        'Connections': {
                            'distance': edge_dists
                        }
                    })
                    edge_count += len(presyn_gids)
                    node_count += 1

            logger.info(
                '*** Rank %d: Writing projection %s -> %s selection: %d nodes, %d edges'
                % (rank, presyn_name, postsyn_name, node_count, edge_count))
            write_graph(write_selection_file_path, \
                        src_pop_name=presyn_name, dst_pop_name=postsyn_name, \
                        edges=gid_dict, comm=env.comm, io_size=env.io_size)
        env.comm.barrier()

    return input_sources
Ejemplo n.º 6
0
def init_circuit_context(env,
                         pop_name,
                         gid,
                         load_edges=False,
                         connection_graph=None,
                         load_weights=False,
                         weight_dict=None,
                         load_synapses=False,
                         synapses_dict=None,
                         set_edge_delays=True,
                         **kwargs):

    syn_attrs = env.synapse_attributes
    synapse_config = env.celltypes[pop_name]['synapses']

    has_weights = False
    weight_config = []
    if 'weights' in synapse_config:
        has_weights = True
        weight_config = synapse_config['weights']

    init_synapses = False
    init_weights = False
    init_edges = False
    if load_edges or (connection_graph is not None):
        init_synapses = True
        init_edges = True
    if has_weights and (load_weights or (weight_dict is not None)):
        init_synapses = True
        init_weights = True
    if load_synapses or (synapses_dict is not None):
        init_synapses = True

    if init_synapses:
        if synapses_dict is not None:
            syn_attrs.init_syn_id_attrs(gid, **synapses_dict)
        elif load_synapses or load_edges:
            if (pop_name in env.cell_attribute_info) and (
                    'Synapse Attributes' in env.cell_attribute_info[pop_name]):
                synapses_iter = read_cell_attribute_selection(
                    env.data_file_path,
                    pop_name, [gid],
                    'Synapse Attributes',
                    mask=set([
                        'syn_ids', 'syn_locs', 'syn_secs', 'syn_layers',
                        'syn_types', 'swc_types'
                    ]),
                    comm=env.comm)
                syn_attrs.init_syn_id_attrs_from_iter(synapses_iter)
            else:
                raise RuntimeError(
                    'init_circuit_context: synapse attributes not found for %s: gid: %i'
                    % (pop_name, gid))
        else:
            raise RuntimeError(
                "init_circuit_context: invalid synapses parameters")

    if init_weights and has_weights:

        for weight_config_dict in weight_config:

            expr_closure = weight_config_dict.get('closure', None)
            weights_namespaces = weight_config_dict['namespace']

            cell_weights_dicts = {}
            if weight_dict is not None:
                for weights_namespace in weights_namespaces:
                    if weights_namespace in weight_dict:
                        cell_weights_dicts[weights_namespace] = weight_dict[
                            weights_namespace]

            elif load_weights:
                if (env.data_file_path is None):
                    raise RuntimeError(
                        'init_circuit_context: load_weights=True but data file path is not specified '
                    )

                for weights_namespace in weights_namespaces:
                    cell_weights_iter = read_cell_attribute_selection(
                        env.data_file_path,
                        pop_name,
                        selection=[gid],
                        namespace=weights_namespace,
                        comm=env.comm)
                    for cell_weights_gid, cell_weights_dict in cell_weights_iter:
                        assert (cell_weights_gid == gid)
                        cell_weights_dicts[
                            weights_namespace] = cell_weights_dict

            else:
                raise RuntimeError(
                    "init_circuit_context: invalid weights parameters")
            if len(weights_namespaces) != len(cell_weights_dicts):
                logger.warning(
                    "init_circuit_context: Unable to load all weights namespaces: %s"
                    % str(weights_namespaces))

            multiple_weights = 'error'
            append_weights = False
            for weights_namespace in weights_namespaces:
                if weights_namespace in cell_weights_dicts:
                    cell_weights_dict = cell_weights_dicts[weights_namespace]
                    weights_syn_ids = cell_weights_dict['syn_id']
                    for syn_name in (syn_name for syn_name in cell_weights_dict
                                     if syn_name != 'syn_id'):
                        weights_values = cell_weights_dict[syn_name]
                        syn_attrs.add_mech_attrs_from_iter(
                            gid,
                            syn_name,
                            zip_longest(
                                weights_syn_ids,
                                [{
                                    'weight': Promise(expr_closure, [x])
                                } for x in weights_values]
                                if expr_closure else [{
                                    'weight': x
                                } for x in weights_values]),
                            multiple=multiple_weights,
                            append=append_weights)
                        logger.info(
                            'init_circuit_context: gid: %i; found %i %s synaptic weights in namespace %s'
                            % (gid, len(cell_weights_dict[syn_name]), syn_name,
                               weights_namespace))
                        logger.info(
                            'weight_values min/max/mean: %.02f / %.02f / %.02f'
                            % (np.min(weights_values), np.max(weights_values),
                               np.mean(weights_values)))
                expr_closure = None
                append_weights = True
                multiple_weights = 'overwrite'

    if init_edges:
        if connection_graph is not None:
            (graph, a) = connection_graph
        elif load_edges:
            if env.connectivity_file_path is None:
                raise RuntimeError(
                    'init_circuit_context: load_edges=True but connectivity file path is not specified '
                )
            elif os.path.isfile(env.connectivity_file_path):
                (graph, a) = read_graph_selection(
                    file_name=env.connectivity_file_path,
                    selection=[gid],
                    namespaces=['Synapses', 'Connections'],
                    comm=env.comm)
        else:
            raise RuntimeError(
                'init_circuit_context: connection file %s not found' %
                env.connectivity_file_path)
    else:
        (graph, a) = None, None

    if graph is not None:
        if pop_name in graph:
            for presyn_name in graph[pop_name].keys():
                edge_iter = graph[pop_name][presyn_name]
                syn_attrs.init_edge_attrs_from_iter(pop_name, presyn_name, a,
                                                    edge_iter, set_edge_delays)
        else:
            logger.error(
                'init_circuit_context: connection attributes not found for %s: gid: %i'
                % (pop_name, gid))
            raise Exception
Ejemplo n.º 7
0
def load_biophys_cell_dicts(env,
                            pop_name,
                            gid_set,
                            data_file_path=None,
                            load_connections=True,
                            validate_tree=True):
    """
    Loads the data necessary to instantiate BiophysCell into the given dictionary.

    :param env: an instance of env.Env
    :param pop_name: population name
    :param gid: gid
    :param data_file_path: str or None
    :param load_connections: bool
    :param validate_tree: bool

    Environment can be instantiated as:
    env = Env(config_file, template_paths, dataset_prefix, config_prefix)
    :param template_paths: str; colon-separated list of paths to directories containing hoc cell templates
    :param dataset_prefix: str; path to directory containing required neuroh5 data files
    :param config_prefix: str; path to directory containing network and cell mechanism config files
    """

    synapse_config = env.celltypes[pop_name]['synapses']

    has_weights = False
    weights_config = None
    if 'weights' in synapse_config:
        has_weights = True
        weights_config = synapse_config['weights']

    ## Loads cell morphological data, synaptic attributes and connection data

    tree_dicts = {}
    synapses_dicts = {}
    weight_dicts = {}
    connection_graphs = {gid: {pop_name: {}} for gid in gid_set}
    graph_attr_info = None

    gid_list = list(gid_set)
    tree_attr_iter, _ = read_tree_selection(env.data_file_path,
                                            pop_name,
                                            gid_list,
                                            comm=env.comm,
                                            topology=True,
                                            validate=validate_tree)
    for gid, tree_dict in tree_attr_iter:
        tree_dicts[gid] = tree_dict

    if load_connections:
        synapses_iter = read_cell_attribute_selection(
            env.data_file_path,
            pop_name,
            gid_list,
            'Synapse Attributes',
            mask=set([
                'syn_ids', 'syn_locs', 'syn_secs', 'syn_layers', 'syn_types',
                'swc_types'
            ]),
            comm=env.comm)
        for gid, attr_dict in synapses_iter:
            synapses_dicts[gid] = attr_dict

        if has_weights:
            for config in weights_config:
                weights_namespaces = config['namespace']
                cell_weights_iters = [
                    read_cell_attribute_selection(env.data_file_path,
                                                  pop_name,
                                                  gid_list,
                                                  weights_namespace,
                                                  comm=env.comm)
                    for weights_namespace in weights_namespaces
                ]
                for weights_namespace, cell_weights_iter in zip_longest(
                        weights_namespaces, cell_weights_iters):
                    for gid, cell_weights_dict in cell_weights_iter:
                        this_weights_dict = weight_dicts.get(gid, {})
                        this_weights_dict[
                            weights_namespace] = cell_weights_dict
                        weight_dicts[gid] = this_weights_dict

        graph, graph_attr_info = read_graph_selection(
            file_name=env.connectivity_file_path,
            selection=gid_list,
            namespaces=['Synapses', 'Connections'],
            comm=env.comm)
        if pop_name in graph:
            for presyn_name in graph[pop_name].keys():
                edge_iter = graph[pop_name][presyn_name]
                for (postsyn_gid, edges) in edge_iter:
                    connection_graphs[postsyn_gid][pop_name][presyn_name] = [
                        (postsyn_gid, edges)
                    ]

    cell_dicts = {}
    for gid in gid_set:
        this_cell_dict = {}

        tree_dict = tree_dicts[gid]
        this_cell_dict['morph'] = tree_dict

        if load_connections:
            synapses_dict = synapses_dicts[gid]
            weight_dict = weight_dicts.get(gid, None)
            connection_graph = connection_graphs[gid]
            this_cell_dict['synapse'] = synapses_dict
            this_cell_dict['connectivity'] = connection_graph, graph_attr_info
            this_cell_dict['weight'] = weight_dict
        cell_dicts[gid] = this_cell_dict

    return cell_dicts
Ejemplo n.º 8
0
def main(config, coordinates, gid, field_width, peak_rate, input_features_path, input_features_namespaces,
         output_weights_path, output_features_path, weights_path, h5types_path, synapse_name, initial_weights_namespace,
         structured_weights_namespace, connections_path, destination, sources, arena_id, baseline_weight,
         field_width_scale, max_iter, verbose, dry_run, interactive):
    """

    :param config: str (path to .yaml file)
    :param weights_path: str (path to .h5 file)
    :param initial_weights_namespace: str
    :param structured_weights_namespace: str
    :param connections_path: str (path to .h5 file)
    :param destination: str
    :param sources: list of str
    :param verbose:
    :param dry_run:
    :return:
    """

    utils.config_logging(verbose)
    logger = utils.get_script_logger(__file__)

    env = Env(config_file=config)

    if output_weights_path is None:
        if weights_path is None:
            raise RuntimeError('Output weights path must be specified when weights path is not specified.')
        output_weights_path = weights_path
    
    if (not dry_run):
        if not os.path.isfile(output_weights_path):
            if weights_path is not None:
                input_file  = h5py.File(weights_path,'r')
            elif h5types_path is not None:
                input_file  = h5py.File(h5types_path,'r')
            else:
                raise RuntimeError('h5types input path must be specified when weights path is not specified.')
            output_file = h5py.File(output_weights_path,'w')
            input_file.copy('/H5Types',output_file)
            input_file.close()
            output_file.close()

    
    this_input_features_namespaces = ['%s %s' % (input_features_namespace, arena_id) for input_features_namespace in input_features_namespaces]

    initial_weights_dict = None
    if weights_path is not None:
        logger.info('Reading initial weights data from %s...' % weights_path)
        cell_attributes_dict = read_cell_attribute_selection(weights_path, destination, 
                                                             namespaces=[initial_weights_namespace],
                                                             selection=[gid])
                                                            
        if initial_weights_namespace in cell_attributes_dict:
            initial_weights_iter = cell_attributes_dict[initial_weights_namespace]
            initial_weights_dict = { gid: attr_dict for gid, attr_dict in initial_weights_iter }
        else:
            raise RuntimeError('Initial weights namespace %s was not found in file %s' % (initial_weights_namespace, weights_path))
    
        logger.info('Rank %i; destination: %s; read synaptic weights for %i cells' %
                    (env.comm.rank, destination, len(initial_weights_dict)))


    features_attr_names = ['Num Fields', 'Field Width', 'Peak Rate', 'X Offset', 'Y Offset', 'Arena Rate Map']
    
    local_random = np.random.RandomState()

    seed_offset = int(env.model_config['Random Seeds']['GC Structured Weights'])
    local_random.seed(int(gid + seed_offset))
    
    spatial_resolution = env.stimulus_config['Spatial Resolution'] # cm

    arena = env.stimulus_config['Arena'][arena_id]
    default_run_vel = arena.properties['default run velocity']  # cm/s

    x, y = stimulus.get_2D_arena_spatial_mesh(arena, spatial_resolution)
    
    plasticity_kernel = lambda x, y, x_loc, y_loc, sx, sy: gauss2d(x-x_loc, y-y_loc, sx=sx, sy=sy)
    plasticity_kernel = np.vectorize(plasticity_kernel, excluded=[2,3,4,5])


    dst_input_features = defaultdict(dict)
    num_fields = len(coordinates)
    this_field_width = np.array([field_width]*num_fields, dtype=np.float32)
    this_peak_rate = np.array([peak_rate]*num_fields, dtype=np.float32)
    this_x0 = np.array([x for x, y in coordinates], dtype=np.float32)
    this_y0 = np.array([y for x, y in coordinates], dtype=np.float32)
    this_rate_map = np.asarray(get_rate_map(this_x0, this_y0, this_field_width, this_peak_rate, x, y),
                               dtype=np.float32)
    selectivity_type = env.selectivity_types['place']
    dst_input_features[destination][gid] = {
        'Selectivity Type': np.array([selectivity_type], dtype=np.uint8),
        'Num Fields': np.array([num_fields], dtype=np.uint8),
        'Field Width': this_field_width,
        'Peak Rate': this_peak_rate,
        'X Offset': this_x0,
        'Y Offset': this_y0,
        'Arena Rate Map': this_rate_map.ravel() }

    selection=[gid]
    structured_weights_dict = {}
    source_syn_dict = defaultdict(lambda: defaultdict(list))
    syn_weight_dict = {}
    if weights_path is not None:
        initial_weights_iter = read_cell_attribute_selection(weights_path, destination, 
                                                                 namespace=initial_weights_namespace, 
                                                                 selection=selection)
        syn_weight_attr_dict = dict(initial_weights_iter)

        syn_ids = syn_weight_attr_dict[gid]['syn_id']
        weights = syn_weight_attr_dict[gid][synapse_name]
                    
        for (syn_id, weight) in zip(syn_ids, weights):
            syn_weight_dict[int(syn_id)] = float(weight) 

        logger.info('destination: %s; gid %i; received synaptic weights for %i synapses' %
                        (destination, gid, len(syn_weight_dict)))

    (graph, edge_attr_info) = read_graph_selection(file_name=connections_path,
                                                   selection=[gid],
                                                   namespaces=['Synapses'])
    syn_id_attr_index = None
    for source, edge_iter in viewitems(graph[destination]):
        this_edge_attr_info = edge_attr_info[destination][source]
        if 'Synapses' in this_edge_attr_info and \
           'syn_id' in this_edge_attr_info['Synapses']:
            syn_id_attr_index = this_edge_attr_info['Synapses']['syn_id']
        for (destination_gid, edges) in edge_iter:
            assert destination_gid == gid
            source_gids, edge_attrs = edges

            syn_ids = edge_attrs['Synapses'][syn_id_attr_index]
            this_source_syn_dict = source_syn_dict[source]
            count = 0
            for i in range(len(source_gids)):
                this_source_gid = source_gids[i]
                this_syn_id = syn_ids[i]
                this_syn_wgt = syn_weight_dict.get(this_syn_id, 0.0)
                this_source_syn_dict[this_source_gid].append((this_syn_id, this_syn_wgt))
                count += 1
            logger.info('destination: %s; gid %i; %d synaptic weights from source population %s' %
                        (destination, gid, count, source))
                    
    src_input_features = defaultdict(dict)
    for source in sources:
        source_gids = list(source_syn_dict[source].keys())
        for input_features_namespace in this_input_features_namespaces:
            input_features_iter = read_cell_attribute_selection(input_features_path, source, 
                                                                namespace=input_features_namespace,
                                                                mask=set(features_attr_names), 
                                                                selection=source_gids)
            this_src_input_features = src_input_features[source]
            count = 0
            for gid, attr_dict in input_features_iter:
                this_src_input_features[gid] = attr_dict
                count += 1
            logger.info('Read %s feature data for %i cells in population %s' % (input_features_namespace, count, source))

    this_syn_weights = \
      synapses.generate_structured_weights(destination_gid,
                                           destination,
                                           synapse_name,
                                           sources,
                                           dst_input_features,
                                           src_input_features,
                                           source_syn_dict,
                                           spatial_mesh=(x,y),
                                           plasticity_kernel=plasticity_kernel,
                                           field_width_scale=field_width_scale,
                                           baseline_weight=baseline_weight,
                                           local_random=local_random,
                                           interactive=interactive)

    assert this_syn_weights is not None
    structured_weights_dict[destination_gid] = this_syn_weights
    logger.info('destination: %s; gid %i; generated structured weights for %i inputs'
                   % (destination, destination_gid, len(this_syn_weights['syn_id'])))
    gc.collect()
    if not dry_run:
            
        logger.info('Destination: %s; appending structured weights...' % (destination))
        this_structured_weights_namespace = '%s %s' % (structured_weights_namespace, arena_id)
        append_cell_attributes(output_weights_path, destination, structured_weights_dict,
                               namespace=this_structured_weights_namespace)
        logger.info('Destination: %s; appended structured weights' % (destination))
        structured_weights_dict.clear()
        if output_features_path is not None:
            output_features_namespace = 'Place Selectivity %s' % arena_id
            cell_attr_dict = dst_input_features[destination]
            logger.info('Destination: %s; appending features...' % (destination))
            append_cell_attributes(output_features_path, destination,
                                   cell_attr_dict, namespace=output_features_namespace)
            
            
        gc.collect()
            
    del(syn_weight_dict)
    del(src_input_features)
    del(dst_input_features)