Ejemplo n.º 1
0
def ivcurve(mechanism_name, i_type, vmin=-100, vmax=100, deltav=1, transient_time=50, test_time=50, rs=1, vinit=-665):
    """
    Returns the (peak) current-voltage relationship for an ion channel.

    Args:
        mechanism_name = name of the mechanism (e.g. hh)
        i_type = which current to monitor (e.g. ik, ina)
        vmin = minimum voltage step to test
        vmax = maximum voltage step to test
        deltav = increment of voltage
        transient_time = how long to ignore for initial conditions to stabilize (ms)
        test_time = duration of the voltage clamp tests (ms)
        rs = resistance of voltage clamp in MOhm
        vinit = initialization voltage

    Returns:
        i = iterable of peak currents (in mA/cm^2)
        v = iterable of corresponding test voltages

    Note:
        The initialization potential (vinit) may affect the result. For example, consider
        the Hodgkin-Huxley sodium channel; a large fraction are inactivated at rest. Using a
        strongly hyperpolarizing vinit will uninactivate many channels, leading to more
        current.
    """
    from neuron import h
    import numpy
    h.load_file('stdrun.hoc')
    sec = h.Section()
    sec.insert(mechanism_name)
    sec.L = 1
    sec.diam = 1
    seclamp = h.SEClamp(sec(0.5))
    seclamp.amp1 = vinit
    seclamp.dur1 = transient_time
    seclamp.dur2 = test_time 
    seclamp.rs = rs
    i_record = h.Vector()
    i_record.record(sec(0.5).__getattribute__('_ref_' + i_type))
    result_i = []
    result_v = numpy.arange(vmin, vmax, deltav)
    for test_v in result_v:
        seclamp.amp2 = test_v
        h.finitialize(vinit)
        h.continuerun(transient_time)
        num_transient_points = len(i_record)
        h.continuerun(test_time + transient_time)
        i_record2 = i_record.as_numpy()[num_transient_points:]
        baseline_i = i_record2[0]
        i_record_shift = i_record2 - baseline_i
        max_i = max(i_record_shift)
        min_i = min(i_record_shift)
        peak_i = max_i if abs(max_i) > abs(min_i) else min_i
        peak_i += baseline_i
        result_i.append(peak_i)
    return result_i, result_v
Ejemplo n.º 2
0
def runModel(tstop,recorders = None,parameters = None,vectorparameters = None,verbose = False):
    '''
    Clears the recorders.
    Passes parameters to NEURON.
    Initializes the model and runs until tstop.
    '''
#   print "Resetting model."
    for ii in recorders.itervalues():
       	ii.clear()
    h.rec_electrode.clear()
    passValuesToNeuron(parameters,verbose)
    passValuesToNeuron(vectorparameters,vectorparameters.keys(),verbose)
    h('resetModel()')
    h.initialize()
    h.init()
    h.continuerun(tstop)
Ejemplo n.º 3
0
def trivial_ecs(scale):
    from neuron import h, crxd as rxd
    import numpy
    import warnings
    warnings.simplefilter("ignore", UserWarning)
    h.load_file('stdrun.hoc')
    tstop = 10
    if scale:   #variable step case
        h.CVode().active(True)
        h.CVode().event(tstop)
    else:           #fixed step case
        h.dt = 0.1

    sec = h.Section() #NEURON requires at least 1 section

    # enable extracellular RxD
    rxd.options.enable.extracellular = True

    # simulation parameters
    dx = 1.0    # voxel size
    L = 9.0     # length of initial cube
    Lecs = 21.0 # lengths of ECS

    # define the extracellular region
    extracellular = rxd.Extracellular(-Lecs/2., -Lecs/2., -Lecs/2.,
                                      Lecs/2., Lecs/2., Lecs/2., dx=dx,
                                      volume_fraction=0.2, tortuosity=1.6)

    # define the extracellular species
    k_rxd = rxd.Species(extracellular, name='k', d=2.62, charge=1,
                        atolscale=scale, initial=lambda nd: 1.0 if 
                        abs(nd.x3d) <= L/2. and abs(nd.y3d) <= L/2. and 
                        abs(nd.z3d) <= L/2. else 0.0)

    # record the concentration at (0,0,0)
    ecs_vec = h.Vector()
    ecs_vec.record(k_rxd[extracellular].node_by_location(0, 0, 0)._ref_value)
    h.finitialize()
    h.continuerun(tstop) #run the simulation
    
    # compare with previous solution 
    ecs_vec.sub(h.Vector(trivial_ecs_data[scale]))
    ecs_vec.abs()
    if ecs_vec.sum() > 1e-9:
        return -1
    return 0
Ejemplo n.º 4
0
def runsim(izhm):
    global Iin, ax1, recvecs
    h.dt = 0.025
    f1 = []
    ax1 = None
    if fig1 is not None: plt.clf()
    for Iin in IinRange:
        izhm.Iin = Iin
        h.init()

        if burstMode:
            izhm.Iin = IinHyper
            h.init()
            h.continuerun(120)
            izhm.Iin = Iin
            h.run()
        else:
            h.run()
        plotall()
def runsim (izhm):
  global Iin, ax1, recvecs
  h.dt = 0.025
  f1 = []
  ax1=None
  if fig1 is not None: plt.clf()
  for Iin in IinRange:
    izhm.Iin=Iin
    h.init()

    if burstMode:
            izhm.Iin=IinHyper
            h.init()
            h.continuerun(120)
            izhm.Iin=Iin
            h.run()
    else:
            h.run()
    plotall()
Ejemplo n.º 6
0
def block_run(Dt=100.0, logger=None):
    """Run for tstop in blocks of Dt time"""
    if h.tstop < Dt:
        Dt = h.tstop
    if logger is not None:
        logger.info('Starting simulation for {}'.format(h.tstop))
    print('Starting simulation for {}'.format(h.tstop))
    start = timer()
    while h.t < (h.tstop - Dt):
        h.continuerun(h.t + Dt)
        end = timer()
        if logger is not None:
            logger.info('Finished till {} ms of simulation in {} s.'.format(
                h.t, end - start))
    h.continuerun(h.tstop)
    end = timer()
    if logger is not None:
        logger.info('Finished {} ms of simulation in {} s.'.format(
            h.tstop, end - start))
Ejemplo n.º 7
0
    def run(self):
        """Run the simulation:
        if beginning from a blank state, then will use h.run(),
        if continuing from the saved state, then will use h.continuerun() 
        """
        for mod in self._sim_mods:
            if isinstance(mod, mods.ClampReport):
                if mod.variable == "se":
                    mod.initialize(self, self._seclamps)
                elif mod.variable == "ic":
                    mod.initialize(self, self._iclamps)
                elif mod.variable == "f_ic":
                    mod.initialize(self, self._f_iclamps)
            else:
                mod.initialize(self)

        self.start_time = h.startsw()
        s_time = time.time()
        pc.timeout(0)

        pc.barrier()  # wait for all hosts to get to this point
        io.log_info(
            'Running simulation for {:.3f} ms with the time step {:.3f} ms'.
            format(self.tstop, self.dt))
        io.log_info('Starting timestep: {} at t_sim: {:.3f} ms'.format(
            self.tstep, h.t))
        io.log_info('Block save every {} steps'.format(self.nsteps_block))

        if self._start_from_state:
            h.continuerun(h.tstop)
        else:
            h.run(h.tstop)  # <- runs simuation: works in parallel

        pc.barrier()

        for mod in self._sim_mods:
            mod.finalize(self)
        pc.barrier()

        end_time = time.time()

        sim_time = self.__elapsed_time(end_time - s_time)
        io.log_info('Simulation completed in {} '.format(sim_time))
Ejemplo n.º 8
0
    def run(mode):
        pc.set_maxstep(10)
        h.stdinit()
        if mode == 0:
            pc.psolve(h.tstop)
        elif mode == 1:
            while h.t < h.tstop:
                pc.psolve(h.t + 1.0)
        else:
            while h.t < h.tstop:
                h.continuerun(h.t + 0.5)
                pc.psolve(h.t + 0.5)
        tran = [h.t, h.soma(0.5).v, h.soma(0.5).hh.m]

        assert tv.eq(tvstd)
        assert (
            v.cl().sub(vstd).abs().max() < 1e-10
        )  # usually v == vstd, some compilers might give slightly different results
        assert i_mem.cl().sub(i_memstd).abs().max() < 1e-10
        assert h.Vector(tran_std).sub(h.Vector(tran)).abs().max() < 1e-10
Ejemplo n.º 9
0
def do_work(i):
    pc = h.ParallelContext()
    rank = int(pc.id())
    nhost = int(pc.nhost())
    print("worker %d of %d: %i" % (rank, nhost, i))
    soma = h.Section(name='soma')
    soma.L = 20
    soma.diam = 20
    soma.insert('hh')
    iclamp = h.IClamp(soma(0.5))
    iclamp.delay = 2
    iclamp.dur = 0.1
    iclamp.amp = 0.9
    rec_v = h.Vector()
    rec_t = h.Vector()
    rec_v.record(soma(0.5)._ref_v)  # Membrane potential vector
    rec_t.record(h._ref_t)
    h.finitialize(-65)
    h.fadvance()
    h.continuerun(250)
    return rec_v.max()
Ejemplo n.º 10
0
def myrun():
    global fit  # pointer to FinitializeHandler needs to be global so doesn't disappear
    dastart = datetime.now()
    print 'started at:', dastart
    if dconf['useWM']: setupWMInputs()
    h.stdinit()
    ca[er].concentration = dconf['caerinit']  # 100e-6
    ca[cyt].concentration = dconf['cacytinit']  # 100e-6
    if dconf['cvodeactive']: h.cvode.re_init()
    h.continuerun(h.t + tstop)  # run for tstop
    daend = datetime.now()
    print 'finished ', tstop, ' ms sim at:', daend
    dadiff = daend - dastart
    print 'runtime:', dadiff, '(', tstop / 1e3, ' s)'
    # concatenate the results so can view/save all at once
    global lspks, lids
    lspks, lids = array([]), array([])
    for i in xrange(len(ltimevec)):
        lspks = concatenate((lspks, ltimevec[i]))
        lids = concatenate((lids, lidvec[i]))
    ion()
    plotnew(xl=(9.9, 11))
Ejemplo n.º 11
0
    def plot(self):
        stim = h.IClamp(self.cell.dend(1))

        stim.get_segment()

        stim.delay = 5
        stim.dur = 1
        stim.amp = 0.1

        soma_v = h.Vector().record(self.cell.soma(0.5)._ref_v)
        dend_v = h.Vector().record(self.cell.dend(0.5)._ref_v)
        t = h.Vector().record(h._ref_t)
        amps = [0.075 * i for i in range(1, 5)]
        colors = ['green', 'blue', 'red', 'black']
        self.ax_soma.clear()
        self.ax_dend.clear()
        self.ax_dend.set_xlabel('t (ms)')
        self.ax_dend.set_ylabel('v (mV)')
        self.ax_soma.set_xlabel('t (ms)')
        self.ax_soma.set_ylabel('v (mV)')
        try:
            for amp, color in zip(amps, colors):
                stim.amp = amp

                h.finitialize(-65 * mV)

                h.continuerun(25 * ms)

                self.canvas_dend.draw()
                self.ax_dend.plot(t, dend_v, color)

                self.canvas_soma.draw()
                self.ax_soma.plot(t, soma_v, color)

            self.ax_dend.legend(["{:.2f}".format(elem) for elem in amps])
        except:
            self.ax_soma.clear()
            self.ax_dend.clear()
Ejemplo n.º 12
0
    def play(self, fileroot='cell', show_colorbar=True, show_title=False):
        ''' Step through cell response over time '''
        dt = self.play_dt
        tstop = self.play_tstop
        nrn.init()
        nrn.cvode_active(0)
        img_counter=0
        f = mlab.gcf()
        if show_colorbar: mlab.colorbar(self.mlab_cell)
        nrn.initPlot()
        nrn.init()
        nrn.initPlot()
        nrn.init()
        for x in xrange(0, int(tstop/dt)):
            timestamp = "TIME: %.1f" % (x*dt)
            print timestamp
            if show_title:
                try:
                    ftitle.text = timestamp
                except:
                    ftitle = mlab.title(timestamp)
            nrn.continuerun(x*dt)

            dataset = self.mlab_cell.mlab_source.dataset
            v = array(self.calculate_voltage())
            dataset.point_data.remove_array('data')
            array_id = dataset.point_data.add_array(v.T.ravel())
            dataset.point_data.get_array(array_id).name = 'data'
            dataset.point_data.update()
            self.mlab_cell.update_data()
            self.mlab_cell.update_pipeline()

            if self.save_img:
                f.scene.save_png('img/%s_%03d.png' % (fileroot, img_counter))

            img_counter += 1
Ejemplo n.º 13
0
 def sim(self):
     tMax = self.gettMax()
     tData = 0
     tNoise = 0
     h.stdinit()
     x = h.Vector()
     Data = []
     while tData < tMax:
         noiseTimes = [] 
         tData += self.Mdt
         if tData > tMax:
             tData = tMax
         while tNoise < min(tMax,tData):
             tNoise += self.Ndt
             noiseTimes.append(tNoise)
             if tNoise > tMax:
                 tNoise = tMax
             h.continuerun(tNoise)
             cvodewrap.states(x)
             x.x[0] += self.sp*(self.evalW(tNoise) - self.evalW(tNoise-self.Ndt))
             cvodewrap.yscatter(x)
             cvodewrap.re_init()
         Data.append([noiseTimes, x.x[0] + self.sm*self.evalM(tData)])
     return Data 
Ejemplo n.º 14
0
from neuron import h, crxd as rxd

h.load_file("stdrun.hoc")

cell = h.Section(name="cell")
r = rxd.Region([cell])


def Declare_Parameters(**kwargs):
    """helper function enabling clean declaration of parameters in top namespace"""
    for key, value in kwargs.items():
        globals()[key] = rxd.Parameter(r, name=key, initial=value)


def Declare_Species(**kwargs):
    """helper function enabling clean declaration of species in top namespace"""
    for key, value in kwargs.items():
        globals()[key] = rxd.Species(r, name=key, initial=value)


k3 = rxd.Parameter(r, name="k3", initial=1.2)
k4 = rxd.Parameter(r, name="k4", initial=0.6)

P2 = rxd.Species(r, name="P2", initial=0.0614368)
T2 = rxd.Species(r, name="T2", initial=0.0145428)
C = rxd.Species(r, name="C", initial=0.207614)

h.finitialize(-65)
h.continuerun(72)
Ejemplo n.º 15
0
from matplotlib import pyplot
import numpy
import __main__

name = __main__.__file__
if name[-3 :] == '.py':
    name = name[: -3]

h.load_file('stdrun.hoc')

dend = h.Section()
dend.diam = 2
dend.nseg = 101
dend.L = 100

diff_constant = 1

r = rxd.Region(h.allsec())
ca = rxd.Species(r, d=diff_constant, initial=lambda node:
                                                 1 if 0.4 < node.x < 0.6 else 0)

h.finitialize()

for t in [25, 50, 75, 100, 125]:
    h.continuerun(t)
    pyplot.plot([seg.x for seg in dend], ca.states)

pyplot.tight_layout()
pyplot.savefig('{0}.png'.format(name))

Ejemplo n.º 16
0
def continuerun(tstop, dt=0):
    if dt > 0:
        h.dt = dt
    h.continuerun(tstop)
Ejemplo n.º 17
0
cae_init = (0.0017 - cac_init * fc) / fe
ca[er].concentration = cae_init

#ip3.nodes.concentration = 2
for node in ip3.nodes:
    if node.x < .2:
        node.concentration = 2


h.CVode().re_init()

s.variable('cai')
#s.scale(-70, -50)
s.scale(0, 2e-3)

def dorec (dat, nl):
  i = 0 #to go over each node
  for node in nl:
#    print i
    dat[i][datacol] = node.concentration
    i += 1


tstop=3000 
recdt = 100
datacol=0

tstop=1500
h.continuerun(tstop)
del my_other_cell
h.topology()

for sec in h.allsec():
    print('%s: %s' % (sec, ', '.join(sec.psection()['density_mechs'].keys())))

stim = h.IClamp(my_cell.dend(1))

stim.get_segment()

print(', '.join(item for item in dir(stim) if not item.startswith('__')))

stim.delay = 5
stim.dur = 1
stim.amp = 0.1

soma_v = h.Vector().record(my_cell.soma(0.5)._ref_v)
dend_v = h.Vector().record(my_cell.dend(0.5)._ref_v)
t = h.Vector().record(h._ref_t)

amps = [0.075 * i for i in range(1, 5)]
colors = ['green', 'blue', 'red', 'black']
f = plt.figure()
for amp, color in zip(amps, colors):
    stim.amp = amp
    h.finitialize(-65 * mV)
    h.continuerun(25 * ms)
    plt.plot(t, soma_v, color=color)
    plt.plot(t, dend_v, color=color, LineStyle="--")
plt.show()
Ejemplo n.º 19
0
soma.L = 18.8
soma.Ra = 123.0
soma.insert('hh')
h.psection()

# stim
iclamp = h.IClamp(soma(0.5))
iclamp.delay = 100
iclamp.dur = 100
iclamp.amp = 0.1

# record
v = h.Vector().record(soma(0.5)._ref_v)  # Membrane potential vector
t = h.Vector().record(h._ref_t)  # Time stamp vector

# run
h.load_file('stdrun.hoc')
#h.fcurrent()                                       # Make all assigned variables (currents, conductances, etc) consistent with the values of the states. Useful in combination with finitialize().
h.finitialize(-64.97 * mV)
h.continuerun(300 * ms)

# plot
import matplotlib.pyplot as plt
plt.figure()
plt.plot(t, v)
plt.xlabel('t (ms)')
plt.ylabel('v (mV)')
plt.show()

#input("Press Enter to continue...")
Ejemplo n.º 20
0
if name[-3 :] == '.py':
    name = name[: -3]

h.load_file('stdrun.hoc')

dend = h.Section()
dend.diam = 2
dend.nseg = 101
dend.L = 100
rxd.set_solve_type(dimension=3)
diff_constant = 1

r = rxd.Region(h.allsec(),dx=0.5)
ca = rxd.Species(r, d=diff_constant, initial=lambda node:
                                                 1 if 0.4 < node.x < 0.6 else 0)

h.finitialize()
initial_amount = (numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()

for t in [25, 50, 75, 100, 125]:
    h.continuerun(t)
    pyplot.plot([nd.x for nd in ca.nodes], ca.nodes.concentration)

final_amount = (numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()

print("initial {}\tfinal {}\tdiff {}".format(initial_amount, final_amount, initial_amount - final_amount))

pyplot.tight_layout()
pyplot.savefig('{0}.png'.format(name))
pyplot.show()
Ejemplo n.º 21
0
cacyt_trace = h.Vector()
cacyt_trace.record(ca[cyt].nodes(sec)(.5)[0]._ref_concentration)

caer_trace = h.Vector()
caer_trace.record(ca[er].nodes(sec)(.5)[0]._ref_concentration)

ip3_trace = h.Vector()
ip3_trace.record(ip3.nodes(sec)(.5)[0]._ref_concentration)

times = h.Vector()
times.record(h._ref_t)

h.finitialize()

cae_init = (0.0017 - cac_init *fc) / fe
ca[er].concentration = cae_init

for node in ip3.nodes:
    if node.x < 0.2:
        node.concentration = 2


h.CVode().re_init()
h.continuerun(1000)

pyplot.plot(times,cacyt_trace,label="ca[cyt]")
pyplot.plot(times,caer_trace,label="ca[er]")
pyplot.plot(times,ip3_trace,label="ip3")
pyplot.legend()
pyplot.show()
Ejemplo n.º 22
0
def flowJac(noiseTimes):

    cvodewrap.states(x)
    t0 = h.t
    print 't0'
    print t0
    ss = [None] * (len(noiseTimes) + 1)
    k = 0
    ss[0] = h.SaveState()
    ss[0].save()
    cvodewrap.re_init()
    while k < len(noiseTimes):
        print noiseTimes[k]
        h.continuerun(noiseTimes[k])
        ss[k + 1] = h.SaveState()
        ss[k + 1].save()
        cvodewrap.re_init()
        k += 1
    cvodewrap.states(value)

    # Derivative with respect to state
    DFx = pylab.zeros((len(value), len(x)))
    k = 0
    while k < len(x):
        ss[0].restore(1)
        cvodewrap.re_init()
        cvodewrap.states(x)
        temp = x[k]
        if abs(temp) > 1:
            dx = sqrtEps * abs(temp)
        else:
            dx = sqrtEps
        x.x[k] = temp + dx
        cvodewrap.yscatter(x)
        cvodewrap.re_init()
        dx = x[k] - temp  # trick to reduce finite precision error
        h.continuerun(noiseTimes[len(noiseTimes) - 1])
        cvodewrap.states(df)
        df.sub(value)
        df.div(dx)
        DFx[:, k] = numpy.array(df)
        k += 1

    # Derivative with respect to noise
    DFn = pylab.zeros((len(value), len(noiseTimes)))
    noiseTimes.insert(0, t0)
    k = 0
    while k < len(noiseTimes) - 1:
        ss[k + 1].restore(1)
        cvodewrap.re_init()
        if k < len(noiseTimes) - 2:
            dx = sqrtEps
            cvodewrap.states(x)
            x.x[0] += sigp * math.sqrt(noiseTimes[k + 1] - noiseTimes[k]) * dx
            cvodewrap.yscatter(x)
            cvodewrap.re_init()
            h.continuerun(noiseTimes[len(noiseTimes) - 1])
            cvodewrap.states(df)
            df.sub(value)
            df.div(dx)
            DFn[:, k] = numpy.array(df)
        else:
            DFn[:, k] = numpy.array(
                [sigp * math.sqrt(noiseTimes[k + 1] - noiseTimes[k]), 0, 0, 0])
        k += 1

    return [numpy.matrix(value).T, numpy.matrix(DFx), numpy.matrix(DFn)]
Ejemplo n.º 23
0
        print "Max Step Set"

h.stdinit()
#h.cvode.queue_mode(1,0)
h.celsius = 35.0
tfin = 0
if pc.id() == 0:
	print "Initialization Complete, Simulation Starting..."

pc.barrier()
tStart = time.time()
for state in range(num_states):
	tvec.resize(0)
	idvec.resize(0)
	tfin += save_interval
	h.continuerun(tfin)
	
	spikes = {}
	for ii in range(len(tvec)):
		try:
			spikes[idvec[ii]].append(tvec[ii])
		except KeyError:
			spikes[idvec[ii]] = [tvec[ii]]
	
	for ID in spikes:
		spikes[ID] = np.array(spikes[ID])
	
	#time.sleep(int(pc.id())*0.1) # File writing issues; delays seem to work
	with open(scratchdir+"/spikeTimes"+str(int(pc.id())),'wb') as f:
		cPickle.dump(spikes,f,protocol=-1)
	
Ejemplo n.º 24
0
from neuron import h
import matplotlib.pyplot as plt
from neuron.units import mV, ms

from diffusion.ca2.rectangular.cells.cell_rxd_ca import CellRxDCa
from diffusion.ca2.rectangular.utils import record, plot3D_specie

if __name__ == '__main__':
    h.load_file('stdrun.hoc')
    h.cvode.atol(1e-8)
    h.cvode.active(1)

    cell = CellRxDCa(name="cell")
    cell.add_sec(name="head", diam=1, l=1, nseg=11)
    cell.add_rxd()

    # record
    cas_head = record(cell.ca.nodes)
    t = h.Vector().record(h._ref_t)

    # init
    h.finitialize(-65 * mV)
    cell.ca.nodes[5].concentration = 0.01
    h.cvode.re_init()

    # run
    h.continuerun(0.05 * ms)

    plot3D_specie(specie=cas_head, time=t)
    plt.show()
Ejemplo n.º 25
0
# WHERE the dynamics will take place
where = rxd.Region(h.allsec())

# WHO the actors are
u = rxd.Species(where, d=1, initial=0)

# HOW they act
bistable_reaction = rxd.Rate(u, -u * (1 - u) * (0.3 - u))

# initial conditions
h.finitialize()
for node in u.nodes:
    if node.x < .2: node.concentration = 1

def plot_it(color='k'):
    y = u.nodes.concentration
    x = u.nodes.x

    # convert x from normalized position to microns
    x = dend.L * numpy.array(x)

    pyplot.plot(x, y, color)

plot_it('r')

for i in xrange(1, 5):
    h.continuerun(i * 25)
    plot_it()

pyplot.show()
Ejemplo n.º 26
0
def wave_search(size, size_segments, time_period, times, au, Du):
    # needed for standard run system
    h.load_file('stdrun.hoc')

    global dend

    dend = h.Section()
    dend.L = size
    dend.nseg = size_segments

    # WHERE the dynamics will take place
    where = rxd.Region(h.allsec())

    # WHO the actors are
    global u
    global z
    global v

    u = rxd.Species(where, d=Du, initial=0.5)  # activator
    z = rxd.Species(where, d=20, initial=0.5)  # inhibitor
    v = rxd.Species(where, d=0, initial=(1 / dend.L) * 30)  # modulator

    # HOW they act

    a = au
    b = -0.4
    c = 0.6
    d = -0.8
    u0 = 0.5
    z0 = 0.5
    av = 5.0
    kz = 0.001

    bistable_reaction1 = rxd.Rate(u, (a * (u - u0) + b * (z - z0) - av *
                                      (u - u0)**3) * (v**-2))
    bistable_reaction2 = rxd.Rate(z, (c * (u - u0) + d * (z - z0)) * (v**-2))

    # initial conditions
    h.finitialize()
    for node in u.nodes:
        if node.x < .2: node.concentration = 0.6
        if node.x > .8: node.concentration = 0.6
    for node in z.nodes:
        if node.x < .2: node.concentration = 0.6
        if node.x > .8: node.concentration = 0.6

    # Setting up time frame
    global u_timespace

    T_d = times
    T = time_period
    u_timespace = []

    for i in np.arange(0, T_d):
        h.continuerun(i * T)
        u_timespace.append(u.nodes.concentration)

    # activator FFT source files
    u_fft_y = u.nodes.concentration
    u_fft_y = u_fft_y - np.mean(u_fft_y)
    u_fft_x = u.nodes.x
    global u_fft_x_norm
    u_fft_x_norm = dend.L * np.array(u_fft_x)

    # inhibitor FFT source files
    z_fft_y = z.nodes.concentration
    z_fft_y = z_fft_y - np.mean(z_fft_y)
    z_fft_x = z.nodes.x
    z_fft_x_norm = dend.L * np.array(u_fft_x)

    # activator FFT
    Y1 = np.fft.fft(u_fft_y)
    N = len(Y1) / 2 + 1
    dt = dend.L / dend.nseg
    fa = 1.0 / dt
    X = np.linspace(0, fa / 2, N, endpoint=True)

    # inhibitor FFT
    Y2 = np.fft.fft(z_fft_y)
    X2 = np.linspace(0, fa / 2, N, endpoint=True)
    #
    # if ((np.amax(Y1) - np.amin(Y1) < .01) or (np.amax(Y2) - np.amin(Y2) < .01)):
    #     return 0

    if (len(X) == len(2.0 * np.abs(Y1[:N] / N))):
        u_maxx = (np.argmax(2.0 * np.abs(Y1[:N] / N)))
        wavelen = np.around(1 / X[u_maxx])

    plot_it(time_period, times, u_timespace)
    plt.savefig('results/plots/{0}_{1}_{2}_{3}_{4}_{5}.png'.format(
        size, size_segments, time_period, times, au, Du))

    return wavelen
Ejemplo n.º 27
0
CNdegradation = rxd.Rate(CN, -kdN * CN)
t = recorder(h._ref_t)
h.finitialize(-65)

mpvec = recorder(MP.nodes[0]._ref_concentration)
cnvec = recorder(CN.nodes[0]._ref_concentration)
p0vec = recorder(P0.nodes[0]._ref_concentration)
p1vec = recorder(P1.nodes[0]._ref_concentration)
p2vec = recorder(P2.nodes[0]._ref_concentration)
cvec = recorder(C.nodes[0]._ref_concentration)

h.finitialize(-65)
h.CVode().active(True)
print("starting simulation")
start = time.time()
h.continuerun(72 * hour)
finish = time.time() - start
print(finish)

pt = (p0vec.as_numpy() + p1vec + p2vec + cvec + cnvec) / nM
mp = mpvec.as_numpy() / nM
cn = cnvec.as_numpy() / nM
t_in_hours = t.as_numpy() / hour

if __name__ == "__main__":
    from matplotlib import pyplot as plt

    plt.figure(figsize=(8, 6))
    plt.plot(t_in_hours, mp, label="MP")
    plt.plot(t_in_hours, cn, label="CN")
    plt.plot(t_in_hours, pt, label="PT")
Ejemplo n.º 28
0
# WHO the actors are
u = rxd.Species(where, d=1, initial=0)

# HOW they act
bistable_reaction = rxd.Rate(u, -u * (1 - u) * (0.3 - u))

# initial conditions
h.finitialize()
for node in u.nodes:
    if node.x < .2: node.concentration = 1

def plot_it(color='k'):
    y = u.nodes.concentration
    x = u.nodes.x

    # convert x from normalized position to microns
    x = dend.L * numpy.array(x)

    pyplot.plot(x, y, color)

plot_it('r')
interval = 50

t1 = time.time()
for i in range(1, 5):
    h.continuerun(i * interval)
    plot_it()
print(("Time = ", time.time() - t1))

pyplot.show()
Ejemplo n.º 29
0
def trivial_ecs(scale):
    from neuron import h, crxd as rxd
    import numpy
    import warnings

    warnings.simplefilter("ignore", UserWarning)
    h.load_file("stdrun.hoc")
    tstop = 10
    if scale:  # variable step case
        h.CVode().active(True)
        h.CVode().event(tstop)
    else:  # fixed step case
        h.dt = 0.1

    sec = h.Section()  # NEURON requires at least 1 section

    # enable extracellular RxD
    rxd.options.enable.extracellular = True

    # simulation parameters
    dx = 1.0  # voxel size
    L = 9.0  # length of initial cube
    Lecs = 21.0  # lengths of ECS

    # define the extracellular region
    extracellular = rxd.Extracellular(
        -Lecs / 2.0,
        -Lecs / 2.0,
        -Lecs / 2.0,
        Lecs / 2.0,
        Lecs / 2.0,
        Lecs / 2.0,
        dx=dx,
        volume_fraction=0.2,
        tortuosity=1.6,
    )

    # define the extracellular species
    k_rxd = rxd.Species(
        extracellular,
        name="k",
        d=2.62,
        charge=1,
        atolscale=scale,
        initial=lambda nd: 1.0
        if abs(nd.x3d) <= L / 2.0 and abs(nd.y3d) <= L / 2.0 and abs(nd.z3d) <= L / 2.0
        else 0.0,
    )

    # record the concentration at (0,0,0)
    ecs_vec = h.Vector()
    ecs_vec.record(k_rxd[extracellular].node_by_location(0, 0, 0)._ref_value)
    h.finitialize()
    h.continuerun(tstop)  # run the simulation

    # compare with previous solution
    ecs_vec.sub(h.Vector(trivial_ecs_data[scale]))
    ecs_vec.abs()
    if ecs_vec.sum() > 1e-9:
        return -1
    return 0
Ejemplo n.º 30
0
    h.load_file('stdrun.hoc')
    cell = Cell(name=0, mechanism='cadifusrect')
    cell.add_sec(name="head", diam=1, l=1, nseg=11)
    h.cvode.active(1)

    head = cell.secs['head']

    # record
    cas_head = record(what=head, func=lambda seg: seg.cadifusrect._ref_ca[0])
    t = h.Vector().record(h._ref_t)

    # init
    h.finitialize(-65 * mV)
    head(0.5).ca_cadifusrect[0] = 0.02
    h.cvode.re_init()

    # run
    h.continuerun(0.1 * ms)

    data = []
    for i in np.arange(start=0, stop=1 + 1e-10, step=1 / head.nseg):
        data.append(list(head(i).ca_cadifusrect))
    data = np.array(data)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(data)

    plot3D_specie(specie=cas_head, time=t)

    plt.show()
Ejemplo n.º 31
0
def run_current_steps_protocol(cell, amplitudes, ttran, tstep, dt=0.025, temperature=37., use_cvode=False):
    h.load_file('stdrun.hoc')

    print(timestamp() + '>> Inserting the stimulus...')
    stim = h.IClamp(cell.soma[0](0.5))
    stim.dur = tstep
    stim.delay = ttran

    print(timestamp() + '>> Setting up the recorders...')
    rec = {}
    for lbl in 't','vsoma','spikes':
        rec[lbl] = h.Vector()
    rec['t'].record(h._ref_t)
    rec['vsoma'].record(cell.soma[0](0.5)._ref_v)
    apc = h.APCount(cell.soma[0](0.5))
    apc.record(rec['spikes'])

    h.celsius = temperature
    h.dt = dt

    if use_cvode:
        h.tstop = stim.delay + stim.dur + 500
        h.cvode_active(1)
        h.cvode.atol(1e-6)
        h.cvode.rtol(1e-6)
        h.cvode.maxstep(dt)
    else:
        h.tstop = stim.delay - 20
        print(timestamp() + '>> Evolving the model until %g ms...' % h.tstop)
        sys.stdout.flush()
        h.run()
        print(timestamp() + '>> Saving the state...')
        ss = h.SaveState()
        ss.save()

    t = []
    V = []
    spike_times = []

    for i,amp in enumerate(amplitudes):    
        sys.stdout.write('\r' + timestamp() + '>> Trial [%02d/%02d] ' % (i+1,len(amplitudes)))
        sys.stdout.flush()
        if not use_cvode:
            ss.restore()
        stim.amp = amp
        apc.n = 0
        rec['t'].resize(0)
        rec['vsoma'].resize(0)
        rec['spikes'].resize(0)
        if use_cvode:
            h.t = 0
            h.run()
        else:
            h.continuerun(stim.delay + stim.dur + 500.)
        t.append(np.array(rec['t']))
        V.append(np.array(rec['vsoma']))
        spike_times.append(np.array(rec['spikes']))
    sys.stdout.write('\n')

    if use_cvode:
        return np.array(t), np.array(V), np.array(spike_times)
    else:
        return np.array(V), np.array(spike_times)
Ejemplo n.º 32
0
    def plot_voltage(self,
                     ax=None,
                     delay=2,
                     duration=100,
                     dt=0.2,
                     amplitude=1,
                     show=True):
        """Plot voltage on soma for an injected current

        Parameters
        ----------
        ax : instance of matplotlib axis | None
            An axis object from matplotlib. If None,
            a new figure is created.
        delay : float (in ms)
            The start time of the injection current.
        duration : float (in ms)
            The duration of the injection current.
        dt : float (in ms)
            The integration time step
        amplitude : float (in nA)
            The amplitude of the injection current.
        show : bool
            Call plt.show() if True. Set to False if working in
            headless mode (e.g., over a remote connection).
        """
        import matplotlib.pyplot as plt
        from neuron import h
        h.load_file('stdrun.hoc')

        soma = self.soma

        h.tstop = duration
        h.dt = dt
        h.celsius = 37

        iclamp = h.IClamp(soma(0.5))
        iclamp.delay = delay
        iclamp.dur = duration
        iclamp.amp = amplitude

        v_membrane = h.Vector().record(self.soma(0.5)._ref_v)
        times = h.Vector().record(h._ref_t)

        print('Simulating soma voltage')
        h.finitialize()

        def simulation_time():
            print('Simulation time: {0} ms...'.format(round(h.t, 2)))

        for tt in range(0, int(h.tstop), 10):
            h.CVode().event(tt, simulation_time)

        h.continuerun(duration)
        print('[Done]')

        if ax is None:
            fig, ax = plt.subplots(1, 1)
        ax.plot(times, v_membrane)
        ax.set_xlabel('Time (ms)')
        ax.set_ylabel('Voltage (mV)')
        if show:
            plt.show()
Ejemplo n.º 33
0
# HOW they act
bistable_reaction = rxd.Rate(u, -u * (1 - u) * (0.3 - u))

# initial conditions
h.finitialize()
for node in u.nodes:
    if node.x < .2: node.concentration = 1


def plot_it(color='k'):
    y = u.nodes.concentration
    x = u.nodes.x

    # convert x from normalized position to microns
    x = dend.L * numpy.array(x)

    pyplot.plot(x, y, color)


plot_it('r')
interval = 50

t1 = time.time()
for i in range(1, 5):
    h.continuerun(i * interval)
    plot_it()
print(("Time = ", time.time() - t1))

pyplot.show()
Ejemplo n.º 34
0
        nc_grc.append(h.NetCon(grc, stl.GRC_L[0].input, 0, 0, 1))

pfs[0][0].seed(rnd.randint(0, 2e6))

fr = []

h.dt = 0.025
h.tstop = 1
h.v_init = -65
h.celsius = 21

import pylab

h.run()
#for i in range(-42,-42):
h.continuerun(vc.dur[0] * .9)
injects = []
injects.append(vc.i)
h.continuerun(vc.dur[0] + vc.dur[1] * .9)
injects.append(vc.i)
h.continuerun(500)
print injects
print 'Rin = ', (vc.amp[0] - vc.amp[1]) * 1e-3 / (
    (injects[0] - injects[1]) * 1e-9) * 1e-6, ' MOhm,'
print h.area(.5) * 1e-8
print 'Gm = ', (injects[0] - injects[1]) * 1e-9 / (
    (vc.amp[0] - vc.amp[1]) * 1e-3) / (h.area(.5) * 1e-8), ' S/cm2'
print 'Temperature = ', h.celsius
pylab.plot(stls[0].record['time'], vclampi)
#pylab.plot(stls[0].record['time'],stls[0].PF_L[0].i['AMPA'][0])
pylab.ylim(-.1, .1)
Ejemplo n.º 35
0
                10, -5) * (31.39 * math.exp((9.432 * pow(10, -5)) * time) -
                           (3.059 * pow(10, 6)) * math.exp(-.06376 * time))

    def turn_off():
        for time in range(690, 1700):
            axon2(0.5475).hh.gl = 6.81 * pow(
                10, -6) * (6.742 * pow(10, 10) * math.exp(-.03253 * time) +
                           (22.43) * math.exp(-5 * pow(10, -5) * time))
            axon2(0.5525).hh.gl = 6.81 * pow(
                10, -6) * (6.742 * pow(10, 10) * math.exp(-.03253 * time) +
                           (22.43) * math.exp(-5 * pow(10, -5) * time))

    h.finitialize(-65)
    h.CVode().event(200, turn_on)
    h.CVode().event(700, turn_off)
    h.continuerun(1700)

    # Define the derivative function simulate laser induced temp change in water
    def difference(data_list):
        diff = list()
        for item in range(len(data_list) - 1):
            diff.append((data_list[item + 1] - data_list[item]) / 0.025)
        return diff

    '''    
    # Phase Plot of the Action Potentials
    list_v1 = list(v1)
    list_v2 = list(v2)
    list_v3 = list_v1[27644:28744]  # Intercept a complete action potential
    list_v4 = list_v2[27450:28600]  # Intercept a complete action potential
    list_v5 = difference(list_v3)
# --------------------------------
# Set up recording variables
# --------------------------------
'''The cell should be configured to run a simulation. However, we need to indicate which variables we wish to record
from; these will be stored in a NEURON Vector (h.Vector object). For now, we will record the membrane potential, which is
soma(0.5).v and the corresponding time points (h.t). References to variables are available by preceding the last part of
the variable name with a _ref_'''

v = h.Vector().record(soma(0.5)._ref_v)  # Membrane potential vector
t = h.Vector().record(h._ref_t)  # Time stamp vector

# --------------------------------
# Run the simulation
# --------------------------------
'''By default, the NEURON h module provides the low level fadvance function for advancing one time step. For higher-level
simulation control specification, we load NEURON's stdrun library'''
h.load_file('stdrun.hoc')
'''We can then initialize our simulation such that our cell has a resting membrane potential of -65 mV'''
h.finitialize(-65 * mV)
'''And then continue the simulation from the current time (0) until 40 ms'''
h.continuerun(40 * ms)

# --------------------------------
# Plot the results
# --------------------------------
print('\nPlotting model results...')
plt.figure()
plt.plot(t, v)
plt.xlabel('t (ms)')
plt.ylabel('v (mV)')
plt.show()
Ejemplo n.º 37
0
ca_pump = rxd.MultiCompartmentReaction(
    ca[cyt],
    cao[ecs],
    ca[cyt] * scale,
    custom_dynamics=True,
    membrane_flux=True,
    membrane=mem,
)

t = h.Vector().record(h._ref_t)
ca_vec = h.Vector().record(soma(0.5)._ref_cai)
ca_vec2 = h.Vector().record(cao.nodes(soma(0.5))._ref_value)
v = h.Vector().record(soma(0.5)._ref_v)

h.finitialize(-65 * mV)
h.continuerun(100 * ms)

if __name__ == "__main__":
    import matplotlib.pyplot as plt

    plt.subplot(2, 1, 1)
    plt.plot(t, ca_vec * 1000, label="inside")
    plt.plot(t, ca_vec2 * 1000, label="outside")
    plt.ylabel("[Ca] (uM)")
    plt.legend()
    plt.subplot(2, 1, 2)
    plt.plot(t, v)
    plt.ylabel("v (mV)")
    plt.xlabel("t (ms)")
    plt.show()
Ejemplo n.º 38
0
def run_atype_test(param_dict={},
                   inhib_levels=[0.0, 1.0],
                   run_time=300,
                   current_dict={
                       'amp': 0.0,
                       'start': 0.0,
                       'dur': 0.0
                   }):

    t_path = join(os.getcwd(), 'morphologies/mpg141209_A_idA.asc')

    my_cells = []
    my_clamps = []
    soma_v_vecs = []
    s_ika_vecs = []
    apic_v_vecs = []
    a_ika_vecs = []

    for i_i, i_val in enumerate(inhib_levels):
        my_cells.append(ca1p.MyCell(t_path, True, param_dict))

        for sec in my_cells[-1].apical:
            for seg in sec:
                pre_val = seg.gkabar_kad
                seg.gkabar_kad = i_val * pre_val

        my_clamps.append(h.IClamp(my_cells[-1].somatic[0](0.5)))

        my_clamps[-1].amp = current_dict['amp']
        my_clamps[-1].delay = current_dict['start']
        my_clamps[-1].dur = current_dict['dur']

        soma_v_vecs.append(h.Vector().record(
            my_cells[-1].somatic[0](0.5)._ref_v))
        apic_v_vecs.append(h.Vector().record(
            my_cells[-1].apical[35](0.5)._ref_v))
        s_ika_vecs.append(h.Vector().record(
            my_cells[-1].somatic[0](0.5)._ref_ik_kap))
        a_ika_vecs.append(h.Vector().record(
            my_cells[-1].apical[35](0.5)._ref_ik_kad))

    t_vec = h.Vector().record(h._ref_t)
    print('Cells and Records created')

    cv_act = 1
    h.cvode.active(cv_act)

    h.v_init = -69.4
    h.celsius = 34.0

    print('cvode active: {0}'.format(cv_act))

    s_v_dict = {}
    a_v_dict = {}
    s_ika_dict = {}
    a_ika_dict = {}

    h.stdinit()
    print('Initialized')

    h.continuerun(run_time)
    print('Finished Running')

    for i_i, i_val in enumerate(inhib_levels):
        s_v_dict[i_i] = np.array(soma_v_vecs[i_i])
        a_v_dict[i_i] = np.array(apic_v_vecs[i_i])

        s_ika_dict[i_i] = np.array(s_ika_vecs[i_i])
        a_ika_dict[i_i] = np.array(a_ika_vecs[i_i])

    res_dict = {
        'soma_v_dict': s_v_dict,
        'apical_v_dict': a_v_dict,
        'soma_ika_dict': s_ika_dict,
        'apical_ika_dict': a_ika_dict,
        'inhibition_values': np.array(inhib_levels),
        't': np.array(t_vec),
    }

    return res_dict
Ejemplo n.º 39
0
cae_init = (0.0017 - cac_init * fc) / fe
ca[er].concentration = cae_init

#ip3.nodes.concentration = 2
for node in ip3.nodes:
    if node.x < .2:
        node.concentration = 2

h.CVode().re_init()

s.variable('cai')
#s.scale(-70, -50)
s.scale(0, 2e-3)


def dorec(dat, nl):
    i = 0  #to go over each node
    for node in nl:
        #    print i
        dat[i][datacol] = node.concentration
        i += 1


tstop = 3000
recdt = 100
datacol = 0

tstop = 1500
h.continuerun(tstop)
Ejemplo n.º 40
0
def get_base_vm_cli(neuron_model=None, default_cli=4, **kwargs):
    """
    Determine steady-state internal chloride concentration by
    1) instantiating a class that extends BaseNeuron (NOTE: class should not have spiking at default values)
    2) adding KCC2 using the add_kcc2() method
    3) setting [Cl]_i to an arbitrary value (can be set in method invocation)
    4) running a fast simulation for a long time
    5) checking if chloride is at steady state (repeat 4 until it is)
    6) return steady state Vm and [Cl]_i

    :param neuron_model: class extending BaseNeuron
    :param default_cli: arbitrary value of [Cl]_i hopefully close to steady state
    :return: steady state Vm and [Cl]_i
    """
    from baseneuron import BaseNeuron
    remove_kcc2 = False
    if neuron_model is None:
        neuron_model = BaseNeuron
    if isinstance(neuron_model, BaseNeuron):
        # is instantiation of class
        base = neuron_model
        if not base.kcc2_inserted:
            base.add_kcc2()
            remove_kcc2 = True
        base.set_cl(default_cli)

    else:
        # is BaseNeuron class (or child class)
        base = neuron_model(**kwargs)
        base.add_kcc2()
        base.set_cl(default_cli)
    h.tstop = 50000
    h.useCV()
    h.finitialize(-65)

    h.run()

    def at_steady_state(continue_dt):
        """
        check if [Cl]_i is at steady state
        :param continue_dt: amount of time to run
        :return: [Cl]_i if at steady state, False otherwise
        """
        v_start = base.soma(.5)._ref_v[0]
        cli_start = base.soma(.5)._ref_cli[0]
        h.continuerun(h.tstop + continue_dt)
        h.tstop += continue_dt
        v_after = base.soma(.5)._ref_v[0]
        cli_after = base.soma(.5)._ref_cli[0]
        if v_after - v_start < 1e-6 and cli_after - cli_start < 1e-6:
            return cli_after
        else:
            return False

    num_steady_state_checks = 0
    while not at_steady_state(1):
        h.continuerun(h.tstop + 10000)
        h.tstop += 10000
        num_steady_state_checks += 1
        if num_steady_state_checks > 10:
            print("not at steady state even after {} ms".format(
                50000 + num_steady_state_checks * 10000))
            exit(-1)

    h.disableCV()
    vm, cli = base.soma(.5)._ref_v[0], base.soma(.5)._ref_cli[0]
    logger.info("steady state [Cl]_i {}".format(cli))
    logger.info("steady state Vm {}".format(vm))
    logger.info(
        "took {} ms (simulation time)".format(50000 +
                                              num_steady_state_checks * 10000))
    if remove_kcc2:
        base.remove_kcc2()
    h.finitialize(vm)
    return vm, cli
Ejemplo n.º 41
0
cell1_X.record(cell1(0.5)._ref_xi)
cell1_Xorg = h.Vector()
cell1_Xorg.record(Xorg.nodes(cell1)(0.5)[0]._ref_concentration)
cell1V = h.Vector()
cell1V.record(cell1(0.5)._ref_v)

cell2_X = h.Vector()
cell2_X.record(cell2(0.5)._ref_xi)
cell2_Xorg = h.Vector()
cell2_Xorg.record(Xorg.nodes(cell2)(0.5)[0]._ref_concentration)
cell2V = h.Vector()
cell2V.record(cell2(0.5)._ref_v)

# run and plot the results
h.finitialize(-65)
h.continuerun(1000)
if __name__ == "__main__":
    from matplotlib import pyplot

    fig = pyplot.figure()
    pyplot.subplot(2, 2, 1)
    pyplot.plot(t_vec, cell1_X, label="cyt")
    pyplot.plot(t_vec, cell1_Xorg, label="org")
    pyplot.legend()
    pyplot.xlabel("t (ms)")
    pyplot.ylabel("cell 1 x (mM)")

    pyplot.subplot(2, 2, 2)
    pyplot.plot(t_vec, cell2_X, label="cyt")
    pyplot.plot(t_vec, cell2_Xorg, label="org")
    pyplot.xlabel("t (ms)")
Ejemplo n.º 42
0
from matplotlib import pyplot

h.load_file('stdrun.hoc')

sec = h.Section()
sec.nseg = 5
sec.L = 100

r = rxd.Region([sec])
na = rxd.Species(r, initial=lambda foo: 1)
ca = rxd.Species(r, initial=lambda foo: 0)

# not at all biophysical, but just for a test
na_wave = rxd.Rate(na, -ca)
ca_wave = rxd.Rate(ca, na)


def plot_it():
    pyplot.subplot(2, 1, 1)
    pyplot.plot([seg.x * sec.L for seg in sec], ca.states)
    pyplot.subplot(2, 1, 2)
    pyplot.plot([seg.x * sec.L for seg in sec], na.states)


h.finitialize()
h.fadvance()
h.continuerun(1.57)

print na.states
print ca.states