Ejemplo n.º 1
0
def determine_slice_flip(morphology: Morphology, soma_marker: Dict,
                         slice_image_flip: bool):
    """
        Determines whether the tilt correction should be positive or negative

        Parameters
        ----------
        morphology: Morphology object
        soma_marker: soma marker dictionary from reconstruction marker file
        slice_image_flip: indicates whether the image was flipped relative
                          to the slice (e.g the z axis of the image is opposite
                          to the z axis in the slice)

        Returns
        -------
        flip_toggle -1 or 1 to be multiplied against tilt correction
    """

    flip_toggle = 1

    morph_soma = morphology.get_soma()
    if (soma_marker['z'] - morph_soma['z']) > 0:
        flip_toggle = -1

    if flip_toggle == 1 and not slice_image_flip:
        flip_toggle *= -1

    return flip_toggle
Ejemplo n.º 2
0
def calculate_transform(
    gradient_field: xr.DataArray,
    morph: Morphology,
    node: Optional[List[float]] = None,
):
    theta = get_upright_angle(gradient_field, node)
    transform = np.eye(4)
    transform[0:3, 0:3] = aff.rotation_from_angle(theta)

    soma = morph.get_soma()

    cos_theta = np.cos(theta)
    sin_theta = np.sin(theta)

    transform[0:3, 3] = np.asarray([
        -soma["x"] * cos_theta + soma["y"] * sin_theta + soma["x"],
        -soma["x"] * sin_theta - soma["y"] * cos_theta + soma["y"], 0
    ])

    output = {
        'upright_transform': aff.AffineTransform(transform),
        'upright_angle': theta
    }

    return output
def estimate_scale_correction(morphology: Morphology,
                              soma_depth: float,
                              soma_marker_z: float,
                              cut_thickness: Optional[float] = 350):
    """
        Estimate a scale factor to correct the reconstructed morphology
        for slice shrinkage

        Prior to reconstruction, the slice shrinks due to evaporation.
        This is most notable in the z axis, which is the slice thickness.

        To correct for shrinkage we compare soma depth within the slice
        obtained soon after cutting the slice to the fixed_soma_depth obtained
        during the reconstruction. Then the scale correction is estimated as:
        scale  = soma_depth / fixed_soma_depth.
        This is sensible as long as the z span of the corrected reconstruction
        is contained  within the slice thickness. Thus we also estimate
        the maximum scale correction as:
        scale_max  = cut_thickness / z_span,
        and take the smaller of scale and scale_max


        Parameters
        ----------
        morphology: Morphology object
        soma_depth: recorded depth of the soma when it was sliced
        soma_marker_z: soma marker z value from revised marker file
                       (z is on the slice surface for the marker file)
        cut_thickness: thickness of the cut slice

        Returns
        -------
        scale factor correction

    """
    soma_morph_z = morphology.get_soma()['z']
    fixed_depth = np.abs(soma_morph_z - soma_marker_z)
    scale = soma_depth / fixed_depth

    node_z = [node['z'] for node in morphology.nodes()]
    z_range = np.max(node_z) - np.min(node_z)
    scale_max = cut_thickness / z_range

    if scale > scale_max:
        scale = scale_max
        warnings.warn(f"Shrinkage scale correction factor: {scale} "
                      f"exceeded the max allowed value: {scale_max}. "
                      f"Will correct for shrinkage using the maximum value."
                      )

    return scale