Ejemplo n.º 1
0
def rdm_correlation_kendall(RDM1,
                            RDM2,
                            rescale=False,
                            permutation=False,
                            iter=5000):
    """
    Calculate the Kendalls tau Correlation between two RDMs

    Parameters
    ----------
    RDM1 : array [ncons, ncons]
        The RDM 1.
        The shape of RDM1 must be [n_cons, n_cons].
        n_cons represent the number of conidtions.
    RDM2 : array [ncons, ncons].
        The RDM 2.
        The shape of RDM2 must be [n_cons, n_cons].
        n_cons represent the number of conidtions.
    fisherz : bool True or False. Default is False.
        Do the Fisher-Z transform of the RDMs or not.
    rescale : bool True or False. Default is False.
        Rescale the values in RDM or not.
        Here, the maximum-minimum method is used to rescale the values except for the values on the diagonal.
    permutation : bool True or False. Default is False.
        Use permutation test or not.
    iter : int. Default is 5000.
        The times for iteration.

    Returns
    -------
    corr : array [r, p].
        The Kendalls tau Correlation result.
        The shape of corr is [2], including a r-value and a p-value.

    Notes
    -----
    Don't set both fisherz=True and rescale=True.
    """

    if len(np.shape(RDM1)) != 2 or len(
            np.shape(RDM2)) != 2 or np.shape(RDM1)[0] != np.shape(
                RDM1)[1] or np.shape(RDM2)[0] != np.shape(RDM2)[1]:

        return "Invalid input!"

    # get number of conditions
    cons = np.shape(RDM1)[0]

    # calculate the number of value above the diagonal in RDM
    n = int(cons * (cons - 1) / 2)

    if rescale == True:

        # flatten the RDM1
        vrdm = np.reshape(RDM1, [cons * cons])
        # array -> set -> list
        svrdm = set(vrdm)
        lvrdm = list(svrdm)
        lvrdm.sort()

        # get max & min
        maxvalue = lvrdm[-1]
        minvalue = lvrdm[1]

        # rescale
        if maxvalue != minvalue:

            for i in range(cons):
                for j in range(cons):

                    # not on the diagnal
                    if i != j:
                        RDM1[i, j] = float(
                            (RDM1[i, j] - minvalue) / (maxvalue - minvalue))

        # flatten the RDM2
        vrdm = np.reshape(RDM2, [cons * cons])
        # array -> set -> list
        svrdm = set(vrdm)
        lvrdm = list(svrdm)
        lvrdm.sort()

        # get max & min
        maxvalue = lvrdm[-1]
        minvalue = lvrdm[1]

        # rescale
        if maxvalue != minvalue:

            for i in range(cons):
                for j in range(cons):

                    # not on the diagnal
                    if i != j:
                        RDM2[i, j] = float(
                            (RDM2[i, j] - minvalue) / (maxvalue - minvalue))

    # initialize two vectors to store the values above the diagnal of two RDMs
    v1 = np.zeros([n], dtype=np.float64)
    v2 = np.zeros([n], dtype=np.float64)

    # assignment
    nn = 0
    for i in range(cons - 1):
        for j in range(cons - 1 - i):
            v1[nn] = RDM1[i, i + j + 1]
            v2[nn] = RDM2[i, i + j + 1]
            nn = nn + 1

    # calculate the Kendalltau Correlation
    rp = np.array(kendalltau(v1, v2))

    if permutation == True:

        rp[1] = permutation_corr(v1, v2, method="kendalltau", iter=iter)

    return rp
Ejemplo n.º 2
0
    def test_permutation_corr(self):

        v1 = np.random.rand(20)
        v2 = np.random.rand(20)
        output = permutation_corr(v1, v2)
        self.assertIsNotNone(output)