Ejemplo n.º 1
0
def basic_gradient_descent():
    data = np.genfromtxt('./stack_data_wide_val.csv', delimiter=',')
    X = data[:,:-1]
    y = data[:,-1:]

    scaler = pre.Scaler()
    X_val = scaler.fit_transform(X)

    y_val = np.array(map(lambda x: [0, 1] if x == 0 else [1, 0], y.flatten()))
    
    #X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(np.array(X), np.array(y), "basic_kaggle_data", True)
    #X_val = np.vstack([X_val, X_test]) 
    #y_val = np.vstack([y_val, y_test])

    hid_layer = 300

    mg = neur.split_xy(neur.mini_batch_gen_from_file('stack_data_wide_train.csv', 40), 
                       -1,
                       apply_x = lambda x: scaler.transform(x.astype(float)),
                       apply_y = lambda y: np.array(map(lambda x: [0, 1] if x == 0 else [1, 0], y.flatten()))
                       )

    #bm = rbm.RBM(13408, hid_layer)
    #costs = bm.optimize(neur.just_x(mg), 1000, 0.0007, val_set = X_val)

    #first_layer_weights = np.hstack([np.zeros((hid_layer,1)), bm.weights])
    #thetas  = neur.create_initial_thetas([64, hid_layer, 2], 0.12)
    #thetas[0] =  first_layer_weights

    # best so far minibatchsize 40 hidden layer 100 learning rate 0.01

    thetas, costs, val_costs = neur.gradient_decent_gen(mg, 
                                                    #hidden_layer_sz = 11,
                                                    hidden_layer_sz = hid_layer,
                                                    iter = 20000,
                                                    wd_coef = 0.0,
                                                    learning_rate = 0.01,
                                                    #thetas = thetas,
                                                    momentum_multiplier = 0.9,
                                                    rand_init_epsilon = 0.0012,
                                                    do_early_stopping = True,
                                                    #do_dropout = True,
                                                    #dropout_percentage = 0.5,
                                                    #do_learning_adapt = True,
                                                    X_val = np.array(X_val),
                                                    y_val = np.array(y_val)
                                                    )
    h_x, a = neur.forward_prop(X_val, thetas)
    binary_result = ut.map_to_max_binary_result(h_x)
    print "percentage correct predictions: ", ut.percent_equal(binary_result, y_val)
    print "training error:",   costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label='cost')
    plt.plot(val_costs, label='val cost')
    plt.legend()
    plt.ylabel('error rate')
    plt.show()        
Ejemplo n.º 2
0
def rbm_example():
    digits = datasets.load_digits()
    X = digits.images.reshape((digits.images.shape[0], -1))
    X = (X / 16.0)
    y = ut.all_to_sparse(digits.target, max(digits.target) + 1)
    X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(
        np.array(X), np.array(y), "digits_rbm", True)
    X_val = np.vstack([X_val, X_test])
    y_val = np.vstack([y_val, y_test])

    hid_layer = 300

    bm = rbm.RBM(64, hid_layer)
    #exit()

    costs = bm.optimize(neur.mini_batch_generator(X), 2000, 0.08)
    print "validate squared_error", bm.validate(X_val)
    #exit()

    filename = './random_set_cache/data_rbm_run.pkl'

    first_layer_weights = np.hstack([np.zeros((hid_layer, 1)), bm.weights])
    #pickle.dump(first_layer_weights, open(filename, 'w'))

    # first_layer_weights = pickle.load(open(filename, 'r'))

    thetas = neur.create_initial_thetas([64, hid_layer, 10], 0.12)
    thetas[0] = first_layer_weights

    thetas, costs, val_costs = neur.gradient_decent_gen(
        izip(neur.mini_batch_generator(X, 10),
             neur.mini_batch_generator(y, 10)),
        learning_rate=0.05,
        hidden_layer_sz=hid_layer,
        iter=8000,
        thetas=thetas,
        X_val=X_val,
        y_val=y_val,
        do_early_stopping=True)

    h_x, a = neur.forward_prop(X_test, thetas)
    print "percentage correct predictions: ", ut.percent_equal(
        ut.map_to_max_binary_result(h_x), y_test)
    print "training error:", costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label='cost')
    plt.plot(val_costs, label='val cost')
    plt.legend()
    plt.ylabel('error rate')
    plt.show()
Ejemplo n.º 3
0
def rbm_example():
    digits = datasets.load_digits()
    X = digits.images.reshape((digits.images.shape[0], -1))
    X = (X / 16.0)
    y = ut.all_to_sparse( digits.target, max(digits.target) + 1 )
    X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(np.array(X), np.array(y), "digits_rbm", True)
    X_val = np.vstack([X_val, X_test]) 
    y_val = np.vstack([y_val, y_test]) 

    hid_layer = 300

    bm = rbm.RBM(64, hid_layer)
    #exit()
    
    costs = bm.optimize(neur.mini_batch_generator(X), 2000, 0.08)
    print "validate squared_error",  bm.validate(X_val)
    #exit()

    filename = './random_set_cache/data_rbm_run.pkl'

    first_layer_weights = np.hstack([np.zeros((hid_layer,1)), bm.weights])
    #pickle.dump(first_layer_weights, open(filename, 'w'))

    # first_layer_weights = pickle.load(open(filename, 'r'))

    thetas  = neur.create_initial_thetas([64, hid_layer, 10], 0.12)
    thetas[0] =  first_layer_weights

    thetas, costs, val_costs = neur.gradient_decent_gen(izip(neur.mini_batch_generator(X, 10), 
                                                             neur.mini_batch_generator(y, 10)),
                                                        learning_rate = 0.05,
                                                        hidden_layer_sz = hid_layer,
                                                        iter = 8000,
                                                        thetas = thetas, 
                                                        X_val = X_val, 
                                                        y_val = y_val,
                                                        do_early_stopping = True)

    h_x, a = neur.forward_prop(X_test, thetas)
    print "percentage correct predictions: ", ut.percent_equal(ut.map_to_max_binary_result(h_x), y_test)
    print "training error:",   costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label='cost')
    plt.plot(val_costs, label='val cost')
    plt.legend()
    plt.ylabel('error rate')
    plt.show()        
Ejemplo n.º 4
0
def basic_gradient_descent():
    digits = datasets.load_digits()
    # iris = datasets.load_iris()
    X = digits.images.reshape((digits.images.shape[0], -1))

    scaler = pre.Scaler()
    X = scaler.fit_transform(X)

    y = ut.all_to_sparse(digits.target, max(digits.target) + 1)
    X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(
        np.array(X), np.array(y), "basic_grad_descent_digits")
    X_val = np.vstack([X_val, X_test])
    y_val = np.vstack([y_val, y_test])

    thetas, costs, val_costs = neur.gradient_decent_gen(
        izip(neur.mini_batch_generator(X, 10),
             neur.mini_batch_generator(y, 10)),
        #hidden_layer_sz = 11,
        hidden_layer_sz=100,
        iter=1000,
        wd_coef=0.0,
        learning_rate=0.1,
        momentum_multiplier=0.9,
        rand_init_epsilon=0.012,
        do_early_stopping=True,
        #do_dropout = True,
        #dropout_percentage = 0.8,
        #do_learning_adapt = True,
        X_val=np.array(X_val),
        y_val=np.array(y_val))
    h_x, a = neur.forward_prop(X_test, thetas)
    binary_result = ut.map_to_max_binary_result(h_x)
    print "percentage correct predictions: ", ut.percent_equal(
        binary_result, y_test)
    print "training error:", costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label='cost')
    plt.plot(val_costs, label='val cost')
    plt.legend()
    plt.ylabel('error rate')
    plt.show()
Ejemplo n.º 5
0
def basic_gradient_descent():
    digits = datasets.load_digits()
    # iris = datasets.load_iris()
    X = digits.images.reshape((digits.images.shape[0], -1))

    scaler = pre.Scaler()
    X = scaler.fit_transform(X)

    y = ut.all_to_sparse(digits.target, max(digits.target) + 1)
    X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(
        np.array(X), np.array(y), "basic_grad_descent_digits"
    )
    X_val = np.vstack([X_val, X_test])
    y_val = np.vstack([y_val, y_test])

    thetas, costs, val_costs = neur.gradient_decent_gen(
        izip(neur.mini_batch_generator(X, 10), neur.mini_batch_generator(y, 10)),
        # hidden_layer_sz = 11,
        hidden_layer_sz=100,
        iter=1000,
        wd_coef=0.0,
        learning_rate=0.1,
        momentum_multiplier=0.9,
        rand_init_epsilon=0.012,
        do_early_stopping=True,
        # do_dropout = True,
        # dropout_percentage = 0.8,
        # do_learning_adapt = True,
        X_val=np.array(X_val),
        y_val=np.array(y_val),
    )
    h_x, a = neur.forward_prop(X_test, thetas)
    binary_result = ut.map_to_max_binary_result(h_x)
    print "percentage correct predictions: ", ut.percent_equal(binary_result, y_test)
    print "training error:", costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label="cost")
    plt.plot(val_costs, label="val cost")
    plt.legend()
    plt.ylabel("error rate")
    plt.show()
Ejemplo n.º 6
0
def basic_gradient_descent():
    data = np.genfromtxt('./stack_data_wide_val.csv', delimiter=',')
    X = data[:, :-1]
    y = data[:, -1:]

    scaler = pre.Scaler()
    X_val = scaler.fit_transform(X)

    y_val = np.array(map(lambda x: [0, 1] if x == 0 else [1, 0], y.flatten()))

    #X, y, X_val, y_val, X_test, y_test = neur.cross_validation_sets(np.array(X), np.array(y), "basic_kaggle_data", True)
    #X_val = np.vstack([X_val, X_test])
    #y_val = np.vstack([y_val, y_test])

    hid_layer = 300

    mg = neur.split_xy(neur.mini_batch_gen_from_file(
        'stack_data_wide_train.csv', 40),
                       -1,
                       apply_x=lambda x: scaler.transform(x.astype(float)),
                       apply_y=lambda y: np.array(
                           map(lambda x: [0, 1]
                               if x == 0 else [1, 0], y.flatten())))

    #bm = rbm.RBM(13408, hid_layer)
    #costs = bm.optimize(neur.just_x(mg), 1000, 0.0007, val_set = X_val)

    #first_layer_weights = np.hstack([np.zeros((hid_layer,1)), bm.weights])
    #thetas  = neur.create_initial_thetas([64, hid_layer, 2], 0.12)
    #thetas[0] =  first_layer_weights

    # best so far minibatchsize 40 hidden layer 100 learning rate 0.01

    thetas, costs, val_costs = neur.gradient_decent_gen(
        mg,
        #hidden_layer_sz = 11,
        hidden_layer_sz=hid_layer,
        iter=20000,
        wd_coef=0.0,
        learning_rate=0.01,
        #thetas = thetas,
        momentum_multiplier=0.9,
        rand_init_epsilon=0.0012,
        do_early_stopping=True,
        #do_dropout = True,
        #dropout_percentage = 0.5,
        #do_learning_adapt = True,
        X_val=np.array(X_val),
        y_val=np.array(y_val))
    h_x, a = neur.forward_prop(X_val, thetas)
    binary_result = ut.map_to_max_binary_result(h_x)
    print "percentage correct predictions: ", ut.percent_equal(
        binary_result, y_val)
    print "training error:", costs[-1:][0]
    print "validation error:", val_costs[-1:][0]
    print "lowest validation error:", min(val_costs)
    plt.plot(costs, label='cost')
    plt.plot(val_costs, label='val cost')
    plt.legend()
    plt.ylabel('error rate')
    plt.show()