Ejemplo n.º 1
0
def N_Abcd(predicted, actual):
    predicted_txt = []
    # abcd = Abcd(db='Traing', rx='Testing')
    global The

    def isDef(x):
        return "Defective" if x > 0 else "Non-Defective"
        # use the.option.threshold for cart,
        # rf and where!!

    for data in predicted:
        predicted_txt += [
            isDef(data)]  # this is for defect prediction, binary classes
        # predicted_txt.append(data)  # for multiple classes, just use it
    score = sk_abcd(predicted_txt, actual)
    return score
Ejemplo n.º 2
0
def _Abcd(predicted, actual):
  predicted_txt = []
   # abcd = Abcd(db='Traing', rx='Testing')
  global The

  def isDef(x):
    return "Defective" if x >= The.option.threshold else "Non-Defective"
    # use the.option.threshold for cart,
    # rf and where!!

  for data in predicted:
    # predicted_txt += [isDef(data)]  # this is for defect prediction, binary classes
    predicted_txt.append(data)  # for multiple classes, just use it
  score = sk_abcd(predicted_txt, actual)
  # if The.option.tunedobjective == 6: # auc
  actual_binary = np.array([ 1 if i == "Delay" else 0 for i in actual ])
  predicted_binary = np.array([ 1 if i == "Delay" else 0 for i in predicted ])
  score[0].append(int(roc_auc_score(actual_binary,predicted_binary)*100))
  score[1].append(int(roc_auc_score(actual_binary,predicted_binary)*100))
  return score
Ejemplo n.º 3
0
 def callModel(self, clf):
     predict_result = clf.predict(self.test_X)
     predict_pro = clf.predict_proba(self.test_X)
     scores = sk_abcd(predict_result, self.test_Y, predict_pro[:, 1])
     return scores[-1]
Ejemplo n.º 4
0
 def callModel(self, clf, threshold):
     predict_result = clf.predict(self.test_X)
     # predict_pro = clf.predict_proba(self.test_X)
     scores = sk_abcd(predict_result, self.test_Y, threshold)
     return scores[-1]