Ejemplo n.º 1
0
def initialize_timestamp_array(comment_number, cascade_source_timestamp):
    timestamp_column_names_list = ["timestamp_true", "timestamp"]
    timestamp_array = np.empty((comment_number, 2), dtype=np.float64)
    update_feature_value(timestamp_array, 0, 0, cascade_source_timestamp)
    update_feature_value(timestamp_array, 0, 1, cascade_source_timestamp)

    return timestamp_column_names_list, timestamp_array
def update_basic_max_depth_max_width_ratio(feature_array, i, j, intermediate_dict):
    # comment_depth = intermediate_dict["comment_depth"]
    # basic_max_depth_max_width_ratio = update_max_depth_max_width_ratio(intermediate_dict["depth_node_dict"],
    #                                                                    comment_depth,
    #                                                                    feature_to_list["basic_max_width"][-1])
    basic_max_depth_max_width_ratio = update_max_depth_max_width_ratio(intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_max_depth_max_width_ratio)
def update_user_graph_hirsch_index(feature_array, i, j, intermediate_dict):
    commenter_id = intermediate_dict["commenter_id"]
    user_hirsch = update_user_hirsch_eponymous(
        intermediate_dict["contributor_comment_count"], feature_array[i - 1,
                                                                      j],
        intermediate_dict["contributor_comment_count"][commenter_id])
    update_feature_value(feature_array, i, j, user_hirsch)
def initialize_timestamp_array(comment_number,
                               cascade_source_timestamp):
    timestamp_column_names_list = ["timestamp_true", "timestamp"]
    timestamp_array = np.empty((comment_number, 2),
                               dtype=np.float64)
    update_feature_value(timestamp_array, 0, 0, cascade_source_timestamp)
    update_feature_value(timestamp_array, 0, 1, cascade_source_timestamp)

    return timestamp_column_names_list, timestamp_array
def update_basic_max_depth_max_width_ratio(feature_array, i, j,
                                           intermediate_dict):
    # comment_depth = intermediate_dict["comment_depth"]
    # basic_max_depth_max_width_ratio = update_max_depth_max_width_ratio(intermediate_dict["depth_node_dict"],
    #                                                                    comment_depth,
    #                                                                    feature_to_list["basic_max_width"][-1])
    basic_max_depth_max_width_ratio = update_max_depth_max_width_ratio(
        intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_max_depth_max_width_ratio)
def update_user_graph_indegree_normalized_entropy(feature_array, i, j,
                                                  intermediate_dict):
    within_discussion_anonymous_coward = intermediate_dict[
        "within_discussion_anonymous_coward"]
    user_graph_indegree_normalized_entropy = update_normalized_graph_indegree_entropy(
        intermediate_dict["contributor_replied_to_count"],
        intermediate_dict["set_of_contributors"],
        within_discussion_anonymous_coward)
    update_feature_value(feature_array, i, j,
                         user_graph_indegree_normalized_entropy)
def update_user_graph_user_count_estimated(feature_array, i, j,
                                           intermediate_dict):
    user_count_estimated = update_user_count_estimated(
        intermediate_dict["set_of_contributors"],
        intermediate_dict["anonymous_coward_comments_counter"])
    update_feature_value(feature_array, i, j, user_count_estimated)
def update_user_graph_randic_index(feature_array, i, j, intermediate_dict):
    user_randic = update_randic_index(
        intermediate_dict["user_randic_graph"].tocoo())
    update_feature_value(feature_array, i, j, user_randic)
def update_user_graph_indegree_normalized_entropy(feature_array, i, j, intermediate_dict):
    within_discussion_anonymous_coward = intermediate_dict["within_discussion_anonymous_coward"]
    user_graph_indegree_normalized_entropy = update_normalized_graph_indegree_entropy(intermediate_dict["contributor_replied_to_count"],
                                                                                      intermediate_dict["set_of_contributors"],
                                                                                      within_discussion_anonymous_coward)
    update_feature_value(feature_array, i, j, user_graph_indegree_normalized_entropy)
def update_branching_randic_index(feature_array, i, j, intermediate_dict):
    branching_randic_index = update_randic_index(intermediate_dict["branching_randic_graph"].tocoo())
    update_feature_value(feature_array, i, j, branching_randic_index)
def update_user_graph_hirsch_index(feature_array, i, j, intermediate_dict):
    commenter_id = intermediate_dict["commenter_id"]
    user_hirsch = update_user_hirsch_eponymous(intermediate_dict["contributor_comment_count"],
                                                   feature_array[i-1, j],
                                                   intermediate_dict["contributor_comment_count"][commenter_id])
    update_feature_value(feature_array, i, j, user_hirsch)
def update_user_graph_outdegree_entropy(feature_array, i, j, intermediate_dict):
    user_graph_outdegree_entropy = update_graph_outdegree_entropy(intermediate_dict["contributor_comment_count"])
    update_feature_value(feature_array, i, j, user_graph_outdegree_entropy)
def initialize_handcrafted_features(comment_number,
                                    handcrafted_feature_names_set,
                                    op_is_anonymous):
    """
    Initialize dictionary that maps a feature name to a score.

    Output: - feature_to_list: Dictionary that maps feature names to scores.
    """
    handcrafted_feature_names_list = list()
    replicate_feature_if_anonymous_set = list()
    handcrafted_function_list = list()
    handcrafted_feature_array = np.empty((comment_number,
                                          len(handcrafted_feature_names_set)),
                                         dtype=np.float64)

    ####################################################################################################################
    # Discussion tree basic features.
    ####################################################################################################################
    if "basic_comment_count" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_comment_count")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_comment_count"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "basic_max_depth" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_max_depth")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_max_depth"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "basic_ave_depth" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_ave_depth")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_ave_depth"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "basic_max_width" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_max_width")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_max_width"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 1)
    if "basic_ave_width" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_ave_width")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_ave_width"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 1)
    if "basic_max_depth_max_width_ratio" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_max_depth_max_width_ratio")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_max_depth_max_width_ratio"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "basic_depth_width_ratio_ave" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_depth_width_ratio_ave")
        handcrafted_function_list.append(getattr(basic_wrappers, "update_" + "basic_depth_width_ratio_ave"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # Discussion tree branching indices.
    ####################################################################################################################
    if "branching_hirsch_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_hirsch_index")
        handcrafted_function_list.append(getattr(branching_wrappers, "update_" + "branching_hirsch_index"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "branching_wiener_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_wiener_index")
        handcrafted_function_list.append(getattr(branching_wrappers, "update_" + "branching_wiener_index"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "branching_randic_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_randic_index")
        handcrafted_function_list.append(getattr(branching_wrappers, "update_" + "branching_randic_index"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # User graph features
    ####################################################################################################################
    if "user_graph_user_count" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_user_count")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_user_count"))
        if op_is_anonymous:
            update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
        else:
            update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 1)
    if "user_graph_user_count_estimated" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_user_count_estimated")
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_user_count_estimated"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 1)
    if "user_graph_hirsch_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_hirsch_index")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_hirsch_index"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "user_graph_randic_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_randic_index")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_randic_index"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "user_graph_outdegree_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_outdegree_entropy")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_outdegree_entropy"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "user_graph_outdegree_normalized_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_outdegree_normalized_entropy")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_outdegree_normalized_entropy"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 1)
    if "user_graph_indegree_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_indegree_entropy")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_indegree_entropy"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "user_graph_indegree_normalized_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_indegree_normalized_entropy")
        replicate_feature_if_anonymous_set.append(len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(getattr(user_graph_wrappers, "update_" + "user_graph_indegree_normalized_entropy"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # Temporal features.
    ####################################################################################################################
    if "temporal_first_half_mean_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_first_half_mean_time")
        handcrafted_function_list.append(getattr(temporal_wrappers, "update_" + "temporal_first_half_mean_time"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "temporal_last_half_mean_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_last_half_mean_time")
        handcrafted_function_list.append(getattr(temporal_wrappers, "update_" + "temporal_last_half_mean_time"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "temporal_std_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_std_time")
        handcrafted_function_list.append(getattr(temporal_wrappers, "update_" + "temporal_std_time"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)
    if "temporal_timestamp_range" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_timestamp_range")
        handcrafted_function_list.append(getattr(temporal_wrappers, "update_" + "temporal_timestamp_range"))
        update_feature_value(handcrafted_feature_array, 0, len(handcrafted_function_list) - 1, 0)

    return handcrafted_feature_names_list,\
           replicate_feature_if_anonymous_set,\
           handcrafted_function_list,\
           handcrafted_feature_array
Ejemplo n.º 14
0
def update_branching_hirsch_index(feature_array, i, j, intermediate_dict):
    comment_depth = intermediate_dict["comment_depth"]
    branching_hirsch_index = update_hirsch_index(
        intermediate_dict["depth_node_dict"], feature_array[i - 1, j],
        comment_depth)
    update_feature_value(feature_array, i, j, branching_hirsch_index)
def update_basic_comment_count(feature_array, i, j, intermediate_dict):
    basic_comment_count = update_comment_count(feature_array[i-1, j] + 1)
    update_feature_value(feature_array, i, j, basic_comment_count)
Ejemplo n.º 16
0
def initialize_handcrafted_features(comment_number,
                                    handcrafted_feature_names_set,
                                    op_is_anonymous):
    """
    Initialize dictionary that maps a feature name to a score.

    Output: - feature_to_list: Dictionary that maps feature names to scores.
    """
    handcrafted_feature_names_list = list()
    replicate_feature_if_anonymous_set = list()
    handcrafted_function_list = list()
    handcrafted_feature_array = np.empty(
        (comment_number, len(handcrafted_feature_names_set)), dtype=np.float64)

    ####################################################################################################################
    # Discussion tree basic features.
    ####################################################################################################################
    if "basic_comment_count" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_comment_count")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_comment_count"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "basic_max_depth" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_max_depth")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_max_depth"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "basic_ave_depth" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_ave_depth")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_ave_depth"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "basic_max_width" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_max_width")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_max_width"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 1)
    if "basic_ave_width" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_ave_width")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_ave_width"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 1)
    if "basic_max_depth_max_width_ratio" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append(
            "basic_max_depth_max_width_ratio")
        handcrafted_function_list.append(
            getattr(basic_wrappers,
                    "update_" + "basic_max_depth_max_width_ratio"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "basic_depth_width_ratio_ave" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("basic_depth_width_ratio_ave")
        handcrafted_function_list.append(
            getattr(basic_wrappers, "update_" + "basic_depth_width_ratio_ave"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # Discussion tree branching indices.
    ####################################################################################################################
    if "branching_hirsch_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_hirsch_index")
        handcrafted_function_list.append(
            getattr(branching_wrappers, "update_" + "branching_hirsch_index"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "branching_wiener_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_wiener_index")
        handcrafted_function_list.append(
            getattr(branching_wrappers, "update_" + "branching_wiener_index"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "branching_randic_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("branching_randic_index")
        handcrafted_function_list.append(
            getattr(branching_wrappers, "update_" + "branching_randic_index"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # User graph features
    ####################################################################################################################
    if "user_graph_user_count" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_user_count")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers, "update_" + "user_graph_user_count"))
        if op_is_anonymous:
            update_feature_value(handcrafted_feature_array, 0,
                                 len(handcrafted_function_list) - 1, 0)
        else:
            update_feature_value(handcrafted_feature_array, 0,
                                 len(handcrafted_function_list) - 1, 1)
    if "user_graph_user_count_estimated" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append(
            "user_graph_user_count_estimated")
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_user_count_estimated"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 1)
    if "user_graph_hirsch_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_hirsch_index")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_hirsch_index"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "user_graph_randic_index" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_randic_index")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_randic_index"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "user_graph_outdegree_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_outdegree_entropy")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_outdegree_entropy"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "user_graph_outdegree_normalized_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append(
            "user_graph_outdegree_normalized_entropy")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_outdegree_normalized_entropy"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 1)
    if "user_graph_indegree_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("user_graph_indegree_entropy")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_indegree_entropy"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "user_graph_indegree_normalized_entropy" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append(
            "user_graph_indegree_normalized_entropy")
        replicate_feature_if_anonymous_set.append(
            len(handcrafted_function_list) - 1)
        handcrafted_function_list.append(
            getattr(user_graph_wrappers,
                    "update_" + "user_graph_indegree_normalized_entropy"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)

    ####################################################################################################################
    # Temporal features.
    ####################################################################################################################
    if "temporal_first_half_mean_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_first_half_mean_time")
        handcrafted_function_list.append(
            getattr(temporal_wrappers,
                    "update_" + "temporal_first_half_mean_time"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "temporal_last_half_mean_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_last_half_mean_time")
        handcrafted_function_list.append(
            getattr(temporal_wrappers,
                    "update_" + "temporal_last_half_mean_time"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "temporal_std_time" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_std_time")
        handcrafted_function_list.append(
            getattr(temporal_wrappers, "update_" + "temporal_std_time"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)
    if "temporal_timestamp_range" in handcrafted_feature_names_set:
        handcrafted_feature_names_list.append("temporal_timestamp_range")
        handcrafted_function_list.append(
            getattr(temporal_wrappers, "update_" + "temporal_timestamp_range"))
        update_feature_value(handcrafted_feature_array, 0,
                             len(handcrafted_function_list) - 1, 0)

    return handcrafted_feature_names_list,\
           replicate_feature_if_anonymous_set,\
           handcrafted_function_list,\
           handcrafted_feature_array
def update_basic_depth_width_ratio_ave(feature_array, i, j, intermediate_dict):
    basic_depth_width_ratio_ave = update_depth_width_ratio_ave(intermediate_dict["depth_width_ratio_sum"],
                                                               intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_depth_width_ratio_ave)
def update_basic_max_depth(feature_array, i, j, intermediate_dict):
    basic_max_depth = update_max_depth(intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_max_depth)
def update_basic_ave_width(feature_array, i, j, intermediate_dict):
    basic_ave_width = update_ave_width(intermediate_dict["width_sum"],
                                       intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_ave_width)
def update_basic_max_width(feature_array, i, j, intermediate_dict):
    comment_depth = intermediate_dict["comment_depth"]
    basic_max_width = update_max_width(intermediate_dict["depth_node_dict"],
                                       comment_depth,
                                       feature_array[i-1, j])
    update_feature_value(feature_array, i, j, basic_max_width)
def update_basic_max_depth(feature_array, i, j, intermediate_dict):
    basic_max_depth = update_max_depth(intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_max_depth)
Ejemplo n.º 22
0
def update_branching_randic_index(feature_array, i, j, intermediate_dict):
    branching_randic_index = update_randic_index(
        intermediate_dict["branching_randic_graph"].tocoo())
    update_feature_value(feature_array, i, j, branching_randic_index)
def update_basic_ave_depth(feature_array, i, j, intermediate_dict):
    basic_ave_depth = update_ave_depth(intermediate_dict["leaf_depth_sum"],
                                       intermediate_dict["set_of_leaves"])
    update_feature_value(feature_array, i, j, basic_ave_depth)
def update_user_graph_user_count_estimated(feature_array, i, j, intermediate_dict):
    user_count_estimated = update_user_count_estimated(intermediate_dict["set_of_contributors"],
                                                       intermediate_dict["anonymous_coward_comments_counter"])
    update_feature_value(feature_array, i, j, user_count_estimated)
def update_basic_max_width(feature_array, i, j, intermediate_dict):
    comment_depth = intermediate_dict["comment_depth"]
    basic_max_width = update_max_width(intermediate_dict["depth_node_dict"],
                                       comment_depth, feature_array[i - 1, j])
    update_feature_value(feature_array, i, j, basic_max_width)
def update_user_graph_randic_index(feature_array, i, j, intermediate_dict):
    user_randic = update_randic_index(intermediate_dict["user_randic_graph"].tocoo())
    update_feature_value(feature_array, i, j, user_randic)
def update_basic_ave_width(feature_array, i, j, intermediate_dict):
    basic_ave_width = update_ave_width(intermediate_dict["width_sum"],
                                       intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_ave_width)
def update_user_graph_indegree_entropy(feature_array, i, j, intermediate_dict):
    user_graph_indegree_entropy = update_graph_indegree_entropy(intermediate_dict["contributor_replied_to_count"])
    update_feature_value(feature_array, i, j, user_graph_indegree_entropy)
def update_user_graph_indegree_entropy(feature_array, i, j, intermediate_dict):
    user_graph_indegree_entropy = update_graph_indegree_entropy(
        intermediate_dict["contributor_replied_to_count"])
    update_feature_value(feature_array, i, j, user_graph_indegree_entropy)
def update_branching_wiener_index(feature_array, i, j, intermediate_dict):
    branching_wiener_index = update_wiener_index(intermediate_dict["subtree_size_vector"],
                                                 intermediate_dict["subtree_cum_size_vector"],
                                                 intermediate_dict["subtree_cum_size_sqrt_vector"])
    update_feature_value(feature_array, i, j, branching_wiener_index)
Ejemplo n.º 31
0
def update_temporal_timestamp_range(feature_array, i, j, intermediate_dict):
    timestamp_range = update_timestamp_range(intermediate_dict["initial_timestamp"],
                                             intermediate_dict["latest_timestamp"])
    update_feature_value(feature_array, i, j, timestamp_range)
def update_branching_hirsch_index(feature_array, i, j, intermediate_dict):
    comment_depth = intermediate_dict["comment_depth"]
    branching_hirsch_index = update_hirsch_index(intermediate_dict["depth_node_dict"],
                                                 feature_array[i-1, j],
                                                 comment_depth)
    update_feature_value(feature_array, i, j, branching_hirsch_index)
def update_basic_comment_count(feature_array, i, j, intermediate_dict):
    basic_comment_count = update_comment_count(feature_array[i - 1, j] + 1)
    update_feature_value(feature_array, i, j, basic_comment_count)
Ejemplo n.º 34
0
def update_temporal_first_half_mean_time(feature_array, i, j, intermediate_dict):
    temporal_first_half_mean_time = update_first_half_time_difference_mean(intermediate_dict["timestamp_differences"])
    update_feature_value(feature_array, i, j, temporal_first_half_mean_time)
Ejemplo n.º 35
0
def update_branching_wiener_index(feature_array, i, j, intermediate_dict):
    branching_wiener_index = update_wiener_index(
        intermediate_dict["subtree_size_vector"],
        intermediate_dict["subtree_cum_size_vector"],
        intermediate_dict["subtree_cum_size_sqrt_vector"])
    update_feature_value(feature_array, i, j, branching_wiener_index)
def update_user_graph_outdegree_entropy(feature_array, i, j,
                                        intermediate_dict):
    user_graph_outdegree_entropy = update_graph_outdegree_entropy(
        intermediate_dict["contributor_comment_count"])
    update_feature_value(feature_array, i, j, user_graph_outdegree_entropy)
def update_basic_ave_depth(feature_array, i, j, intermediate_dict):
    basic_ave_depth = update_ave_depth(intermediate_dict["leaf_depth_sum"],
                                       intermediate_dict["set_of_leaves"])
    update_feature_value(feature_array, i, j, basic_ave_depth)
def update_basic_depth_width_ratio_ave(feature_array, i, j, intermediate_dict):
    basic_depth_width_ratio_ave = update_depth_width_ratio_ave(
        intermediate_dict["depth_width_ratio_sum"],
        intermediate_dict["depth_node_dict"])
    update_feature_value(feature_array, i, j, basic_depth_width_ratio_ave)
Ejemplo n.º 39
0
def update_temporal_std_time(feature_array, i, j, intermediate_dict):
    time_difference_std = update_time_difference_std(intermediate_dict["timestamp_differences"])
    update_feature_value(feature_array, i, j, time_difference_std)