def manualWeight(self, data, target):
     w = 0
     X = np.zeros((np.size(data, 0) * 4, np.size(data, 1)))
     Y = np.zeros(len(target) * 4)
     for i in range(len(data)):
         PlayType, Result = restorePlayType(target[i])
         for j in range(sFunction(Result)):
             X[w, :] = data[i, :]
             Y[w] = target[i]
             w += 1
     return X, Y
 def manualWeight(self, data, target):
     w=0
     X = np.zeros((np.size(data,0)*4, np.size(data,1)))
     Y = np.zeros(len(target)*4)
     for i in range(len(data)):
         PlayType, Result = restorePlayType(target[i])
         for j in range(sFunction(Result)):
             X[w,:] = data[i,:]
             Y[w] = target[i]
             w += 1
     return X, Y
 def recommendationSingle(self, classType):
     PlayType, Result = restorePlayType(classType)
     if gFunction(Result) < 0.0001:
         PlayType = self.switchPlayType(PlayType)
     recommendationCalss = (PlayType - 1) * 10 + Result
     return recommendationCalss
 def recommendationSingle(self,classType):
     PlayType, Result = restorePlayType(classType)
     if gFunction(Result) < 0.0001:
         PlayType = self.switchPlayType(PlayType)
     recommendationCalss = (PlayType-1)*10 + Result
     return recommendationCalss