def __init__(self, season=2014, week=-1):

        self.week = week
        if self.week == -1:
            self.week = "ALL"
        self.season = season
        self.season_examples = []
        self.season_examples_file = '../resources/data/' + str(season) + '_week_' + str(self.week) + '_examples.csv'
        # TODO: write a test for this write_to_file flag
        self.write_to_file = True
        self.writer = nfl_example_io()
        self.ordered_columns = ['Season', 'Week', 'HOMEteam', 'AWAYteam', 'HOMEscore', 'AWAYscore']
Ejemplo n.º 2
0
    def test_examples_for_one_week_in_one_season(self):

        # loop through each game a of particular week and
        # create example for each game and write to csv

        for game in self.schedule:
            if game["Week"] == str(self.week_num):
                home_team = game["HomeTeam"]
                away_team = game["AwayTeam"]
                if home_team != "BYE" and away_team != "BYE":
                    example = nfl_example_maker(home_team, away_team, self.season, self.week_num)
                    self.examples.append(example)

        key_order = self.examples[0].ordered_example_keys

        writer = nfl_example_io()
        writer.create_header(key_order, self.csv_output_file)

        for i in range(len(self.examples)):
            writer.write(self.examples[i].example_data_dict, key_order, self.csv_output_file, "a")
Ejemplo n.º 3
0
# TODO: need to recreate this file using existing data so as to not miss any new max or min values that may
# have come in 2015 or 2016, since it was created only using data up to 2014
min_max_file = "../resources/data/all_examples_with_dvoa_no_teams_normalized_min_max.csv"

data_list = []

with open(raw_data_file, "r") as data_file:
    reader = csv.DictReader(data_file)
    for line in reader:
        data_list.append(line)

# this will churn through all the data and create a normalized data set
# normalized_data = normalizer.normalize_data(data_list)
normalizer = data_normalizer()
normalized_data = normalizer.normalize_data_with_min_max_file(data_list, min_max_file)

# the normal example file uses season, week, home, away as column headers but those are only for readability.  They
# are not needed for any inputs or outputs, so ignoring them here when creating the normalized data which is explicitly
# used for input/output.
key_order = example_creator.season_examples[0].ordered_example_keys
key_order.remove("HOMEteam")
key_order.remove("AWAYteam")
key_order.remove("Season")
key_order.remove("Week")

writer = nfl_example_io()
writer.create_header(key_order, normalized_data_file)

for i in range(len(normalized_data)):
    writer.write(normalized_data[i], key_order, normalized_data_file, "a")
Ejemplo n.º 4
0
 def setUp(self):
     self.csv_file = '/tmp/csv_test_file.csv'
     self.maxDiff = None
     self.writer = nfl_example_io()