Ejemplo n.º 1
0
def test_smooth_image():
    # Test image smoothing
    data = np.arange(24).reshape((2, 3, 4))
    aff = np.diag([-4, 5, 6, 1])
    img = Nifti1Image(data, aff)
    # Zero smoothing is no-op
    out_img = smooth_image(img, 0)
    assert_array_equal(out_img.affine, img.affine)
    assert_array_equal(out_img.shape, img.shape)
    assert_array_equal(out_img.dataobj, data)
    # Isotropic smoothing
    sd = fwhm2sigma(np.true_divide(8, [4, 5, 6]))
    exp_out = spnd.gaussian_filter(data, sd, mode='nearest')
    assert_array_equal(smooth_image(img, 8).dataobj, exp_out)
    assert_array_equal(smooth_image(img, [8, 8, 8]).dataobj, exp_out)
    assert_raises(ValueError, smooth_image, img, [8, 8])
    # Not isotropic
    mixed_sd = fwhm2sigma(np.true_divide([8, 7, 6], [4, 5, 6]))
    exp_out = spnd.gaussian_filter(data, mixed_sd, mode='nearest')
    assert_array_equal(smooth_image(img, [8, 7, 6]).dataobj, exp_out)
    # In 2D
    img_2d = Nifti1Image(data[0], aff)
    exp_out = spnd.gaussian_filter(data[0], sd[:2], mode='nearest')
    assert_array_equal(smooth_image(img_2d, 8).dataobj, exp_out)
    assert_array_equal(smooth_image(img_2d, [8, 8]).dataobj, exp_out)
    assert_raises(ValueError, smooth_image, img_2d, [8, 8, 8])
    # Isotropic in 4D has zero for last dimension in scalar case
    data_4d = np.arange(24 * 5).reshape((2, 3, 4, 5))
    img_4d = Nifti1Image(data_4d, aff)
    exp_out = spnd.gaussian_filter(data_4d, list(sd) + [0], mode='nearest')
    assert_array_equal(smooth_image(img_4d, 8).dataobj, exp_out)
    # But raises error for vector case
    assert_raises(ValueError, smooth_image, img_4d, [8, 8, 8])
    # mode, cval
    exp_out = spnd.gaussian_filter(data, sd, mode='constant')
    assert_array_equal(smooth_image(img, 8, mode='constant').dataobj, exp_out)
    exp_out = spnd.gaussian_filter(data, sd, mode='constant', cval=99)
    assert_array_equal(smooth_image(img, 8, mode='constant', cval=99).dataobj,
                       exp_out)
    # out_class
    img_ni1 = Nifti2Image(data, np.eye(4))
    img_ni2 = Nifti2Image(data, np.eye(4))
    # Default is Nifti1Image
    assert_equal(
        smooth_image(img_ni2, 0).__class__,
        Nifti1Image)
    # Can be overriden
    assert_equal(
        smooth_image(img_ni1, 0, out_class=Nifti2Image).__class__,
        Nifti2Image)
    # None specifies out_class from input
    assert_equal(
        smooth_image(img_ni2, 0, out_class=None).__class__,
        Nifti2Image)
Ejemplo n.º 2
0
def test_resample_from_to():
    # Test resampling from image to image / image space
    data = np.arange(24).reshape((2, 3, 4))
    affine = np.diag([-4, 5, 6, 1])
    img = Nifti1Image(data, affine)
    img.header['descrip'] = 'red shirt image'
    out = resample_from_to(img, img)
    assert_almost_equal(img.dataobj, out.dataobj)
    assert_array_equal(img.affine, out.affine)
    # Check resampling reverses effect of flipping axes
    # This will also test translations
    flip_ornt = np.array([[0, 1], [1, 1], [2, 1]])
    for axis in (0, 1, 2):
        ax_flip_ornt = flip_ornt.copy()
        ax_flip_ornt[axis, 1] = -1
        aff_flip_i = inv_ornt_aff(ax_flip_ornt, (2, 3, 4))
        flipped_img = Nifti1Image(flip_axis(data, axis),
                                  np.dot(affine, aff_flip_i))
        out = resample_from_to(flipped_img, ((2, 3, 4), affine))
        assert_almost_equal(img.dataobj, out.dataobj)
        assert_array_equal(img.affine, out.affine)
    # A translation of one voxel on each axis
    trans_aff = from_matvec(np.diag([-4, 5, 6]), [4, -5, -6])
    trans_img = Nifti1Image(data, trans_aff)
    out = resample_from_to(trans_img, img)
    exp_out = np.zeros_like(data)
    exp_out[:-1, :-1, :-1] = data[1:, 1:, 1:]
    assert_almost_equal(out.dataobj, exp_out)
    out = resample_from_to(img, trans_img)
    trans_exp_out = np.zeros_like(data)
    trans_exp_out[1:, 1:, 1:] = data[:-1, :-1, :-1]
    assert_almost_equal(out.dataobj, trans_exp_out)
    # Test mode with translation of first axis only
    # Default 'constant' mode first
    trans1_aff = from_matvec(np.diag([-4, 5, 6]), [4, 0, 0])
    trans1_img = Nifti1Image(data, trans1_aff)
    out = resample_from_to(img, trans1_img)
    exp_out = np.zeros_like(data)
    exp_out[1:, :, :] = data[:-1, :, :]
    assert_almost_equal(out.dataobj, exp_out)
    # Then 'nearest' mode
    out = resample_from_to(img, trans1_img, mode='nearest')
    exp_out[0, :, :] = exp_out[1, :, :]
    assert_almost_equal(out.dataobj, exp_out)
    # Test order
    trans_p_25_aff = from_matvec(np.diag([-4, 5, 6]), [1, 0, 0])
    trans_p_25_img = Nifti1Image(data, trans_p_25_aff)
    # Suprising to me, but all points outside are set to 0, even with NN
    out = resample_from_to(img, trans_p_25_img, order=0)
    exp_out = np.zeros_like(data)
    exp_out[1:, :, :] = data[1, :, :]
    assert_almost_equal(out.dataobj, exp_out)
    out = resample_from_to(img, trans_p_25_img)
    exp_out = spnd.affine_transform(data, [1, 1, 1], [-0.25, 0, 0], order=3)
    assert_almost_equal(out.dataobj, exp_out)
    # Test cval
    out = resample_from_to(img, trans_img, cval=99)
    exp_out = np.zeros_like(data) + 99
    exp_out[1:, 1:, 1:] = data[:-1, :-1, :-1]
    assert_almost_equal(out.dataobj, exp_out)
    # Out class
    out = resample_from_to(img, trans_img)
    assert out.__class__ == Nifti1Image
    # By default, type of from_img makes no difference
    n1_img = Nifti2Image(data, affine)
    out = resample_from_to(n1_img, trans_img)
    assert out.__class__ == Nifti1Image
    # Passed as keyword arg
    out = resample_from_to(img, trans_img, out_class=Nifti2Image)
    assert out.__class__ == Nifti2Image
    # If keyword arg is None, use type of from_img
    out = resample_from_to(n1_img, trans_img, out_class=None)
    assert out.__class__ == Nifti2Image
    # to_img type irrelevant in all cases
    n1_trans_img = Nifti2Image(data, trans_aff)
    out = resample_from_to(img, n1_trans_img, out_class=None)
    assert out.__class__ == Nifti1Image
    # From 2D to 3D, error, the fixed affine is not invertible
    img_2d = Nifti1Image(data[:, :, 0], affine)
    with pytest.raises(AffineError):
        resample_from_to(img_2d, img)
    # 3D to 2D, we don't need to invert the fixed matrix
    out = resample_from_to(img, img_2d)
    assert_array_equal(out.dataobj, data[:, :, 0])
    # Same for tuple as to_img imput
    out = resample_from_to(img, (img_2d.shape, img_2d.affine))
    assert_array_equal(out.dataobj, data[:, :, 0])
    # 4D input and output also OK
    data_4d = np.arange(24 * 5).reshape((2, 3, 4, 5))
    img_4d = Nifti1Image(data_4d, affine)
    out = resample_from_to(img_4d, img_4d)
    assert_almost_equal(data_4d, out.dataobj)
    assert_array_equal(img_4d.affine, out.affine)
    # Errors trying to match 3D to 4D
    with pytest.raises(ValueError):
        resample_from_to(img_4d, img)
    with pytest.raises(ValueError):
        resample_from_to(img, img_4d)
Ejemplo n.º 3
0
def test_resample_to_output():
    # Test routine to sample iamges to output space
    # Image aligned to output axes - no-op
    data = np.arange(24).reshape((2, 3, 4))
    img = Nifti1Image(data, np.eye(4))
    # Check default resampling
    img2 = resample_to_output(img)
    assert_array_equal(img2.shape, (2, 3, 4))
    assert_array_equal(img2.affine, np.eye(4))
    assert_array_equal(img2.dataobj, data)
    # Check resampling with different voxel size specifications
    for vox_sizes in (None, 1, [1, 1, 1]):
        img2 = resample_to_output(img, vox_sizes)
        assert_array_equal(img2.shape, (2, 3, 4))
        assert_array_equal(img2.affine, np.eye(4))
        assert_array_equal(img2.dataobj, data)
    img2 = resample_to_output(img, vox_sizes)
    # Check 2D works
    img_2d = Nifti1Image(data[0], np.eye(4))
    for vox_sizes in (None, 1, (1, 1), (1, 1, 1)):
        img3 = resample_to_output(img_2d, vox_sizes)
        assert_array_equal(img3.shape, (3, 4, 1))
        assert_array_equal(img3.affine, np.eye(4))
        assert_array_equal(img3.dataobj, data[0][..., None])
    # Even 1D
    img_1d = Nifti1Image(data[0, 0], np.eye(4))
    img3 = resample_to_output(img_1d)
    assert_array_equal(img3.shape, (4, 1, 1))
    assert_array_equal(img3.affine, np.eye(4))
    assert_array_equal(img3.dataobj, data[0, 0][..., None, None])
    # But 4D does not
    img_4d = Nifti1Image(data.reshape(2, 3, 2, 2), np.eye(4))
    with pytest.raises(ValueError):
        resample_to_output(img_4d)
    # Run vox2vox_out tests, checking output shape, coordinate transform
    for in_shape, in_aff, vox, out_shape, out_aff in get_outspace_params():
        # Allow for expansion of image shape from < 3D
        in_n_dim = len(in_shape)
        if in_n_dim < 3:
            in_shape = in_shape + (1,) * (3 - in_n_dim)
            if not vox is None:
                vox = vox + (1,) * (3 - in_n_dim)
            assert len(out_shape) == in_n_dim
            out_shape = out_shape + (1,) * (3 - in_n_dim)
        img = Nifti1Image(np.ones(in_shape), in_aff)
        out_img = resample_to_output(img, vox)
        assert_all_in(in_shape, in_aff, out_img.shape, out_img.affine)
        assert out_img.shape == out_shape
        assert_almost_equal(out_img.affine, out_aff)
    # Check data is as expected with some transforms
    # Flip first axis
    out_img = resample_to_output(Nifti1Image(data, np.diag([-1, 1, 1, 1])))
    assert_array_equal(out_img.dataobj, np.flipud(data))
    # Subsample voxels
    out_img = resample_to_output(Nifti1Image(data, np.diag([4, 5, 6, 1])))
    exp_out = spnd.affine_transform(data,
                                    [1/4, 1/5, 1/6],
                                    output_shape = (5, 11, 19))
    assert_array_equal(out_img.dataobj, exp_out)
    # Unsubsample with voxel sizes
    out_img = resample_to_output(Nifti1Image(data, np.diag([4, 5, 6, 1])),
                                 [4, 5, 6])
    assert_array_equal(out_img.dataobj, data)
    # A rotation to test nearest, order, cval
    rot_3 = from_matvec(euler2mat(np.pi / 4), [0, 0, 0])
    rot_3_img = Nifti1Image(data, rot_3)
    out_img = resample_to_output(rot_3_img)
    exp_shape = (4, 4, 4)
    assert out_img.shape == exp_shape
    exp_aff = np.array([[1, 0, 0, -2 * np.cos(np.pi / 4)],
                        [0, 1, 0, 0],
                        [0, 0, 1, 0],
                        [0, 0, 0, 1]])
    assert_almost_equal(out_img.affine, exp_aff)
    rzs, trans = to_matvec(np.dot(npl.inv(rot_3), exp_aff))
    exp_out = spnd.affine_transform(data, rzs, trans, exp_shape)
    assert_almost_equal(out_img.dataobj, exp_out)
    # Order
    assert_almost_equal(
        resample_to_output(rot_3_img, order=0).dataobj,
        spnd.affine_transform(data, rzs, trans, exp_shape, order=0))
    # Cval
    assert_almost_equal(
        resample_to_output(rot_3_img, cval=99).dataobj,
        spnd.affine_transform(data, rzs, trans, exp_shape, cval=99))
    # Mode
    assert_almost_equal(
        resample_to_output(rot_3_img, mode='nearest').dataobj,
        spnd.affine_transform(data, rzs, trans, exp_shape, mode='nearest'))
    # out_class
    img_ni1 = Nifti2Image(data, np.eye(4))
    img_ni2 = Nifti2Image(data, np.eye(4))
    # Default is Nifti1Image
    assert resample_to_output(img_ni2).__class__ == Nifti1Image
    # Can be overriden
    assert resample_to_output(img_ni1, out_class=Nifti2Image).__class__ == Nifti2Image
    # None specifies out_class from input
    assert resample_to_output(img_ni2, out_class=None).__class__ == Nifti2Image