Ejemplo n.º 1
0
def visualise_edges(rag,
                    edge_values,
                    edge_direction=2,
                    ignore_edges=None,
                    n_threads=None):
    """ Visualize values mapped to the edges of a rag as volume.

    Arguments:
        rag [nifty.rag] - region adjacency graph
        edge_values [np.ndarray] - values mapped to rag edges
        edge_direction [int] - direction into which the edges will be drawn:
            0 - drawn in both directions
            1 - drawn in negative direction
            2 - drawn in positive direction
        ignore_edges [np.ndarray]: mask or indices of edges that should not be drawn
        n_threads [int] - number of threads (default: None)

    Returns:
        np.ndarray - edge volume
    """
    assert rag.numberOfEdges == len(
        edge_values), "%i, %i" % (rag.numberOfEdges, len(edge_values))
    n_threads = multiprocessing.cpu_count() if n_threads is None else n_threads

    edge_builder = nrag.ragCoordinates(rag, numberOfThreads=n_threads)
    if ignore_edges is None:
        edge_values_ = edge_values
    else:
        edge_values_ = edge_values.copy()
        edge_values_[ignore_edges] = 0
    edge_vol = edge_builder.edgesToVolume(edge_values_,
                                          edgeDirection=edge_direction)
    return edge_vol
Ejemplo n.º 2
0
def visualize_probabilities_for_subvolume(sub_ws,
                                          probs,
                                          uv_ids,
                                          edge_direction=2):
    rag = nrag.gridRag(sub_ws, numberOfLabels=int(sub_ws.max()) + 1)

    edge_builder = nrag.ragCoordinates(rag)
    edge_map_att = np.zeros(rag.numberOfEdges, dtype='uint32')
    edge_map_rep = np.zeros(rag.numberOfEdges, dtype='uint32')

    rag_uvs = rag.uvIds()
    indices = find_matching_row_indices(rag_uvs, uv_ids)[:, 0]

    sub_probs = probs[indices]

    # build attractive edges
    edge_map_att[sub_probs <= .1] = 3
    edge_map_att[np.logical_and(sub_probs > .1, sub_probs <= .3)] = 2
    edge_map_att[np.logical_and(sub_probs > .3, sub_probs <= .5)] = 1
    edge_vol_att = edge_builder.edgesToVolume(edge_map_att,
                                              edgeDirection=edge_direction)

    # build repulsive edges
    edge_map_rep[np.logical_and(sub_probs > .5, sub_probs <= .7)] = 1
    edge_map_rep[np.logical_and(sub_probs > .7, sub_probs <= .9)] = 2
    edge_map_rep[sub_probs > .9] = 3
    edge_vol_rep = edge_builder.edgesToVolume(edge_map_rep,
                                              edgeDirection=edge_direction)

    # build edge ids
    edge_ids = np.arange(rag.numberOfEdges).astype('uint32')
    edge_id_vol = edge_builder.edgesToVolume(edge_ids,
                                             edgeDirection=edge_direction)
    return edge_id_vol, edge_vol_att, edge_vol_rep
Ejemplo n.º 3
0
def visualize_probabilities(rag, probs, edge_direction=2, ignore_edges=None):
    assert rag.numberOfEdges == len(probs), "%i, %i" % (rag.numberOfEdges,
                                                        len(probs))

    edge_builder = nrag.ragCoordinates(rag)
    edge_map_att = np.zeros_like(probs, dtype='uint32')
    edge_map_rep = np.zeros_like(probs, dtype='uint32')

    # build attractive edges
    edge_map_att[probs <= .1] = 3
    edge_map_att[np.logical_and(probs > .1, probs <= .3)] = 2
    edge_map_att[np.logical_and(probs > .3, probs <= .5)] = 1
    if ignore_edges is not None:
        edge_map_att[ignore_edges] = 0
    edge_vol_att = edge_builder.edgesToVolume(edge_map_att,
                                              edgeDirection=edge_direction)

    # build repulsive edges
    edge_map_rep[np.logical_and(probs > .5, probs <= .7)] = 1
    edge_map_rep[np.logical_and(probs > .7, probs <= .9)] = 2
    edge_map_rep[probs > .9] = 3
    if ignore_edges is not None:
        edge_map_rep[ignore_edges] = 0
    edge_vol_rep = edge_builder.edgesToVolume(edge_map_rep,
                                              edgeDirection=edge_direction)

    # build edge ids
    edge_ids = np.arange(rag.numberOfEdges).astype('uint32')
    edge_id_vol = edge_builder.edgesToVolume(edge_ids,
                                             edgeDirection=edge_direction)
    return edge_id_vol, edge_vol_att, edge_vol_rep
 def __init__(self, base_segmentation, n_threads=8):
     assert isinstance(base_segmentation, np.ndarray)
     self.base_segmentation = base_segmentation
     self.n_threads = n_threads
     self.rag = nrag.gridRag(self.base_segmentation,
                             numberOfLabels=int(base_segmentation.max()) + 1,
                             numberOfThreads=self.n_threads)
     self.uv_ids = self.rag.uvIds()
     self.volume_builder = nrag.ragCoordinates(self.rag, self.n_threads)
Ejemplo n.º 5
0
def visualize_costs(rag, costs, edge_direction=2):
    assert rag.numberOfEdges == len(costs), "%i, %i" % (rag.numberOfEdges,
                                                        len(costs))

    edge_builder = nrag.ragCoordinates(rag)
    edge_map_att = np.zeros_like(costs, dtype='uint32')
    edge_map_rep = np.zeros_like(costs, dtype='uint32')

    # build attractive edges
    edge_map_att[costs > 0] = 1
    edge_vol_att = edge_builder.edgesToVolume(edge_map_att,
                                              edgeDirection=edge_direction)

    # build repulsive edges
    edge_map_rep[costs < 0] = 1
    edge_vol_rep = edge_builder.edgesToVolume(edge_map_rep,
                                              edgeDirection=edge_direction)

    # build edge ids
    edge_ids = np.arange(rag.numberOfEdges).astype('uint32')
    edge_id_vol = edge_builder.edgesToVolume(edge_ids,
                                             edgeDirection=edge_direction)
    return edge_id_vol, edge_vol_att, edge_vol_rep
def get_contact_sites(seg, n_labels, labels_of_interest, n_threads):

    # compute the region adjacency graph and filter for the edges
    # that connect neurites of interest
    rag = nrag.gridRag(seg, numberOfLabels=n_labels, numberOfThreads=n_threads)
    uv_ids = rag.uvIds()

    # find the edges that connect neurites of interest
    edge_mask = np.in1d(uv_ids,
                        labels_of_interest).reshape(uv_ids.shape).all(axis=1)
    pairs = uv_ids[edge_mask]
    n_pairs = len(pairs)
    edge_labels = np.zeros_like(edge_mask, dtype='uint32')
    edge_labels[edge_mask] = np.arange(1, n_pairs + 1).astype('uint32')

    # build the edge volume with the edges of interest
    edge_builder = nrag.ragCoordinates(rag, numberOfThreads=n_threads)
    edge_vol = edge_builder.edgesToVolume(edge_labels)

    # run connected components and for each connected component
    # get the association to the connected neurites
    edge_vol_cc = vigra.analysis.labelVolumeWithBackground(edge_vol)
    return edge_vol, edge_vol_cc, pairs
Ejemplo n.º 7
0
def get_edge_costs(rag, probs):
    assert rag.numberOfEdges == len(probs), "%i, %i" % (rag.numberOfEdges,
                                                        len(probs))

    edge_builder = nrag.ragCoordinates(rag)
    edge_map_att = np.zeros_like(probs, dtype='uint32')
    edge_map_rep = np.zeros_like(probs, dtype='uint32')

    # build attractive edges
    edge_map_att[probs <= .1] = 3
    edge_map_att[np.logical_and(probs > .1, probs <= .3)] = 2
    edge_map_att[np.logical_and(probs > .3, probs <= .5)] = 1
    edge_vol_att = edge_builder.edgesToVolume(edge_map_att, edgeDirection=2)

    # build repulsive edges
    edge_map_rep[np.logical_and(probs > .5, probs <= .7)] = 1
    edge_map_rep[np.logical_and(probs > .7, probs <= .9)] = 2
    edge_map_rep[probs > .9] = 3
    edge_vol_rep = edge_builder.edgesToVolume(edge_map_rep, edgeDirection=2)

    # build edge ids
    edge_ids = np.arange(rag.numberOfEdges).astype('uint32')
    edge_id_vol = edge_builder.edgesToVolume(edge_ids, edgeDirection=2)
    return edge_id_vol, edge_vol_att, edge_vol_rep
Ejemplo n.º 8
0
def visualise_attractive_and_repulsive_edges(rag,
                                             edge_values,
                                             threshold,
                                             large_values_are_attractive=True,
                                             edge_direction=2,
                                             ignore_edges=None,
                                             n_threads=None):
    """ Visualize values mapped to the edges of a rag that are attractive and repulsive.

    Arguments:
        rag [nifty.rag] - region adjacency graph
        edge_values [np.ndarray] - values mapped to rag edges
        threshold [float] - values below this threhold are repulsive, above repulsive
        large_values_are_attractive [bool] - are large values or small values attractive? (default: True)
        edge_direction [int] - direction into which the edges will be drawn: (default: 2)
            0 - drawn in both directions
            1 - drawn in negative direction
            2 - drawn in positive direction
        ignore_edges [np.ndarray]: mask or indices of edges that should not be drawn
        n_threads [int] - number of threads (default: None)

    Returns:
        np.ndarray - volume of attractive edges
        np.ndarray - volume of repulsive edges
    """
    assert rag.numberOfEdges == len(
        edge_values), "%i, %i" % (rag.numberOfEdges, len(edge_values))
    n_threads = multiprocessing.cpu_count() if n_threads is None else n_threads
    edge_builder = nrag.ragCoordinates(rag, numberOfThreads=n_threads)

    if ignore_edges is None:
        edge_values_ = edge_values
    else:
        edge_values_ = edge_values.copy()
        edge_values_[ignore_edges] = threshold

    # find and normalize the attractive edge values
    attractive_edge_values = np.zeros_like(edge_values)
    if large_values_are_attractive:
        attractive_edges = edge_values_ > threshold
        attractive_edge_values[attractive_edges] = _scale_values(
            edge_values_[attractive_edges], threshold, False)
    else:
        attractive_edges = edge_values_ < threshold
        attractive_edge_values[attractive_edges] = _scale_values(
            edge_values_[attractive_edges], threshold, True)
    edge_vol_attractive = edge_builder.edgesToVolume(
        attractive_edge_values, edgeDirection=edge_direction)

    # find and normalize the repulsive edge values
    repulsive_edge_values = np.zeros_like(edge_values)
    if large_values_are_attractive:
        repulsive_edges = edge_values_ < threshold
        repulsive_edge_values[repulsive_edges] = _scale_values(
            edge_values_[repulsive_edges], threshold, True)
    else:
        repulsive_edges = edge_values_ > threshold
        repulsive_edge_values[repulsive_edges] = _scale_values(
            edge_values_[repulsive_edges], threshold, False)
    edge_vol_repulsive = edge_builder.edgesToVolume(
        repulsive_edge_values, edgeDirection=edge_direction)

    return edge_vol_attractive, edge_vol_repulsive