Ejemplo n.º 1
0
    def __init__(self,
                 model_dir=None,
                 initial_iter=0,
                 tensorboard_every_n=0,
                 **_unused):

        self.tensorboard_every_n = tensorboard_every_n
        # creating new summary subfolder if it's not finetuning
        self.summary_dir = get_latest_subfolder(
            os.path.join(model_dir, 'logs'), create_new=initial_iter == 0)
        self.writer_train = None
        self.writer_valid = None

        GRAPH_CREATED.connect(self.init_writer)
        ITER_STARTED.connect(self.read_tensorboard_op)
        ITER_FINISHED.connect(self.write_tensorboard)
Ejemplo n.º 2
0
    def initialise_application(self, workflow_param, data_param):
        """
        This function receives all parameters from user config file,
        create an instance of application.
        :param workflow_param: a dictionary of user parameters,
        keys correspond to sections in the config file
        :param data_param: a dictionary of input image parameters,
        keys correspond to data properties to be used by image_reader
        :return:
        """
        try:
            system_param = workflow_param.get('SYSTEM', None)
            net_param = workflow_param.get('NETWORK', None)
            train_param = workflow_param.get('TRAINING', None)
            infer_param = workflow_param.get('INFERENCE', None)
            app_param = workflow_param.get('CUSTOM', None)
        except AttributeError:
            tf.logging.fatal('parameters should be dictionaries')
            raise

        assert os.path.exists(system_param.model_dir), \
            'Model folder not exists {}'.format(system_param.model_dir)
        self.is_training = (system_param.action == "train")
        # hardware-related parameters
        self.num_threads = max(system_param.num_threads, 1) \
            if self.is_training else 1
        self.num_gpus = system_param.num_gpus \
            if self.is_training else min(system_param.num_gpus, 1)
        set_cuda_device(system_param.cuda_devices)

        # set output TF model folders
        self.model_dir = touch_folder(
            os.path.join(system_param.model_dir, 'models'))
        self.session_prefix = os.path.join(self.model_dir, FILE_PREFIX)

        if self.is_training:
            assert train_param, 'training parameters not specified'
            summary_root = os.path.join(system_param.model_dir, 'logs')
            self.summary_dir = get_latest_subfolder(
                summary_root, create_new=train_param.starting_iter == 0)

            # training iterations-related parameters
            self.initial_iter = train_param.starting_iter
            self.final_iter = train_param.max_iter
            self.save_every_n = train_param.save_every_n
            self.tensorboard_every_n = train_param.tensorboard_every_n
            self.max_checkpoints = train_param.max_checkpoints
            self.gradients_collector = GradientsCollector(
                n_devices=max(self.num_gpus, 1))
            action_param = train_param
        else:
            assert infer_param, 'inference parameters not specified'
            self.initial_iter = infer_param.inference_iter
            action_param = infer_param

        self.outputs_collector = OutputsCollector(
            n_devices=max(self.num_gpus, 1))

        # create an application instance
        assert app_param, 'application specific param. not specified'
        app_module = ApplicationDriver._create_app(app_param.name)
        self.app = app_module(net_param, action_param, self.is_training)
        # initialise data input
        self.app.initialise_dataset_loader(data_param, app_param)
        # pylint: disable=not-context-manager
        with self.graph.as_default(), tf.name_scope('Sampler'):
            self.app.initialise_sampler()
Ejemplo n.º 3
0
    def initialise_application(self, workflow_param, data_param):
        """
        This function receives all parameters from user config file,
        create an instance of application.

        :param workflow_param: a dictionary of user parameters,
            keys correspond to sections in the config file
        :param data_param: a dictionary of input image parameters,
            keys correspond to data properties to be used by image_reader
        :return:
        """
        try:
            system_param = workflow_param.get('SYSTEM', None)
            net_param = workflow_param.get('NETWORK', None)
            train_param = workflow_param.get('TRAINING', None)
            infer_param = workflow_param.get('INFERENCE', None)
            app_param = workflow_param.get('CUSTOM', None)
        except AttributeError:
            tf.logging.fatal('parameters should be dictionaries')
            raise

        assert os.path.exists(system_param.model_dir), \
            'Model folder not exists {}'.format(system_param.model_dir)
        self.is_training = (system_param.action == "train")
        # hardware-related parameters
        self.num_threads = max(system_param.num_threads, 1) \
            if self.is_training else 1
        self.num_gpus = system_param.num_gpus \
            if self.is_training else min(system_param.num_gpus, 1)
        set_cuda_device(system_param.cuda_devices)

        # set output TF model folders
        self.model_dir = touch_folder(
            os.path.join(system_param.model_dir, 'models'))
        self.session_prefix = os.path.join(self.model_dir, FILE_PREFIX)

        # set training params.
        if self.is_training:
            assert train_param, 'training parameters not specified'
            summary_root = os.path.join(system_param.model_dir, 'logs')
            self.summary_dir = get_latest_subfolder(
                summary_root,
                create_new=train_param.starting_iter == 0)

            self.initial_iter = train_param.starting_iter
            self.final_iter = max(train_param.max_iter, self.initial_iter)
            self.save_every_n = train_param.save_every_n
            self.tensorboard_every_n = train_param.tensorboard_every_n
            self.max_checkpoints = \
                max(train_param.max_checkpoints, self.max_checkpoints)
            self.gradients_collector = GradientsCollector(
                n_devices=max(self.num_gpus, 1))
            self.validation_every_n = train_param.validation_every_n
            if self.validation_every_n > 0:
                self.validation_max_iter = max(self.validation_max_iter,
                                               train_param.validation_max_iter)
            action_param = train_param
        else: # set inference params.
            assert infer_param, 'inference parameters not specified'
            self.initial_iter = infer_param.inference_iter
            action_param = infer_param

        self.outputs_collector = OutputsCollector(
            n_devices=max(self.num_gpus, 1))

        # create an application instance
        assert app_param, 'application specific param. not specified'
        app_module = ApplicationDriver._create_app(app_param.name)
        self.app = app_module(net_param, action_param, system_param.action)

        # initialise data input
        data_partitioner = ImageSetsPartitioner()
        # clear the cached file lists
        data_partitioner.reset()
        do_new_partition = \
            self.is_training and self.initial_iter == 0 and \
            (not os.path.isfile(system_param.dataset_split_file)) and \
            (train_param.exclude_fraction_for_validation > 0 or
             train_param.exclude_fraction_for_inference > 0)
        data_fractions = None
        if do_new_partition:
            assert train_param.exclude_fraction_for_validation > 0 or \
                   self.validation_every_n <= 0, \
                'validation_every_n is set to {}, ' \
                'but train/validation splitting not available,\nplease ' \
                'check "exclude_fraction_for_validation" in the config ' \
                'file (current config value: {}).'.format(
                    self.validation_every_n,
                    train_param.exclude_fraction_for_validation)
            data_fractions = (train_param.exclude_fraction_for_validation,
                              train_param.exclude_fraction_for_inference)

        if data_param:
            data_partitioner.initialise(
                data_param=data_param,
                new_partition=do_new_partition,
                ratios=data_fractions,
                data_split_file=system_param.dataset_split_file)

        if data_param and self.is_training and self.validation_every_n > 0:
            assert data_partitioner.has_validation, \
                'validation_every_n is set to {}, ' \
                'but train/validation splitting not available.\nPlease ' \
                'check dataset partition list {} ' \
                '(remove file to generate a new dataset partition). ' \
                'Or set validation_every_n to -1.'.format(
                    self.validation_every_n, system_param.dataset_split_file)

        # initialise readers
        self.app.initialise_dataset_loader(
            data_param, app_param, data_partitioner)

        self._data_partitioner = data_partitioner

        # pylint: disable=not-context-manager
        with self.graph.as_default(), tf.name_scope('Sampler'):
            self.app.initialise_sampler()
Ejemplo n.º 4
0
    def initialise_application(self, workflow_param, data_param):
        """
        This function receives all parameters from user config file,
        create an instance of application.

        :param workflow_param: a dictionary of user parameters,
            keys correspond to sections in the config file
        :param data_param: a dictionary of input image parameters,
            keys correspond to data properties to be used by image_reader
        :return:
        """
        try:
            system_param = workflow_param.get('SYSTEM', None)
            net_param = workflow_param.get('NETWORK', None)
            train_param = workflow_param.get('TRAINING', None)
            infer_param = workflow_param.get('INFERENCE', None)
            app_param = workflow_param.get('CUSTOM', None)
        except AttributeError:
            tf.logging.fatal('parameters should be dictionaries')
            raise

        assert os.path.exists(system_param.model_dir), \
            'Model folder not exists {}'.format(system_param.model_dir)
        self.is_training = (system_param.action == "train")
        # hardware-related parameters
        self.num_threads = max(system_param.num_threads, 1) \
            if self.is_training else 1
        self.num_gpus = system_param.num_gpus \
            if self.is_training else min(system_param.num_gpus, 1)
        set_cuda_device(system_param.cuda_devices)

        # set output TF model folders
        self.model_dir = touch_folder(
            os.path.join(system_param.model_dir, 'models'))
        self.session_prefix = os.path.join(self.model_dir, FILE_PREFIX)

        if self.is_training:
            assert train_param, 'training parameters not specified'
            summary_root = os.path.join(system_param.model_dir, 'logs')
            self.summary_dir = get_latest_subfolder(
                summary_root, create_new=train_param.starting_iter == 0)

            self.initial_iter = train_param.starting_iter
            self.final_iter = max(train_param.max_iter, self.initial_iter)
            self.save_every_n = train_param.save_every_n
            self.tensorboard_every_n = train_param.tensorboard_every_n
            self.max_checkpoints = \
                max(train_param.max_checkpoints, self.max_checkpoints)
            self.gradients_collector = GradientsCollector(
                n_devices=max(self.num_gpus, 1))
            self.validation_every_n = train_param.validation_every_n
            if self.validation_every_n > 0:
                self.validation_max_iter = max(self.validation_max_iter,
                                               train_param.validation_max_iter)
            action_param = train_param
        else:
            assert infer_param, 'inference parameters not specified'
            self.initial_iter = infer_param.inference_iter
            action_param = infer_param

        self.outputs_collector = OutputsCollector(
            n_devices=max(self.num_gpus, 1))

        # create an application instance
        assert app_param, 'application specific param. not specified'
        app_module = ApplicationDriver._create_app(app_param.name)
        self.app = app_module(net_param, action_param, self.is_training)

        # initialise data input
        data_partitioner = ImageSetsPartitioner()
        # clear the cached file lists
        data_partitioner.reset()
        do_new_partition = \
            self.is_training and self.initial_iter == 0 and \
            (not os.path.isfile(system_param.dataset_split_file)) and \
            (train_param.exclude_fraction_for_validation > 0 or
             train_param.exclude_fraction_for_inference > 0)
        data_fractions = None
        if do_new_partition:
            assert train_param.exclude_fraction_for_validation > 0 or \
                   self.validation_every_n <= 0, \
                'validation_every_n is set to {}, ' \
                'but train/validation splitting not available,\nplease ' \
                'check "exclude_fraction_for_validation" in the config ' \
                'file (current config value: {}).'.format(
                    self.validation_every_n,
                    train_param.exclude_fraction_for_validation)
            data_fractions = (train_param.exclude_fraction_for_validation,
                              train_param.exclude_fraction_for_inference)

        if data_param:
            data_partitioner.initialise(
                data_param=data_param,
                new_partition=do_new_partition,
                ratios=data_fractions,
                data_split_file=system_param.dataset_split_file)

        if data_param and self.is_training and self.validation_every_n > 0:
            assert data_partitioner.has_validation, \
                'validation_every_n is set to {}, ' \
                'but train/validation splitting not available.\nPlease ' \
                'check dataset partition list {} ' \
                '(remove file to generate a new dataset partition). ' \
                'Or set validation_every_n to -1.'.format(
                    self.validation_every_n, system_param.dataset_split_file)

        # initialise readers
        self.app.initialise_dataset_loader(data_param, app_param,
                                           data_partitioner)

        self._data_partitioner = data_partitioner

        # pylint: disable=not-context-manager
        with self.graph.as_default(), tf.name_scope('Sampler'):
            self.app.initialise_sampler()