def clusterWard(img=None, nParcels=1024, standardize=False, smoothing=2):
    """
    Does brain parcellation using Ward clustering
    img -> nii image variable or path
    nParcels (optional, default 1024) -> number of parcels
    standardize (optional, default True) ->
    smoothing (optional, default 2) -> int - the higher it is, the more smoothing is applied
    Returns a tuple containing:
        1 -> Float array of shape (nScans, nParcels) - contains the parcel signals
        2 -> The ward parcellation object
    """
    ward = Parcellations(method='ward',
                         n_parcels=nParcels,
                         standardize=standardize,
                         smoothing_fwhm=smoothing,
                         memory='nilearn_cache',
                         memory_level=1,
                         verbose=1)
    ward.fit(img)
    img = ward.transform(img)
    return img, ward
Ejemplo n.º 2
0
mean_func_img = mean_img(dataset.func[0])

# Compute common vmin and vmax
vmin = np.min(get_data(mean_func_img))
vmax = np.max(get_data(mean_func_img))

plotting.plot_epi(mean_func_img, cut_coords=cut_coords,
                  title='Original (%i voxels)' % original_voxels,
                  vmax=vmax, vmin=vmin, display_mode='xz')

# A reduced dataset can be created by taking the parcel-level average:
# Note that Parcellation objects with any method have the opportunity to
# use a `transform` call that modifies input features. Here it reduces their
# dimension. Note that we `fit` before calling a `transform` so that average
# signals can be created on the brain parcellations with fit call.
fmri_reduced = ward.transform(dataset.func)

# Display the corresponding data compressed using the parcellation using
# parcels=2000.
fmri_compressed = ward.inverse_transform(fmri_reduced)

plotting.plot_epi(index_img(fmri_compressed, 0),
                  cut_coords=cut_coords,
                  title='Ward compressed representation (2000 parcels)',
                  vmin=vmin, vmax=vmax, display_mode='xz')
# As you can see below, this approximation is almost good, although there
# are only 2000 parcels, instead of the original 60000 voxels

#########################################################################
# Brain parcellations with KMeans Clustering
# ------------------------------------------
Ejemplo n.º 3
0
mean_func_img = mean_img(dataset.func[0])

# Compute common vmin and vmax
vmin = np.min(mean_func_img.get_data())
vmax = np.max(mean_func_img.get_data())

plotting.plot_epi(mean_func_img, cut_coords=cut_coords,
                  title='Original (%i voxels)' % original_voxels,
                  vmax=vmax, vmin=vmin, display_mode='xz')

# A reduced dataset can be created by taking the parcel-level average:
# Note that Parcellation objects with any method have the opportunity to
# use a `transform` call that modifies input features. Here it reduces their
# dimension. Note that we `fit` before calling a `transform` so that average
# signals can be created on the brain parcellations with fit call.
fmri_reduced = ward.transform(dataset.func)

# Display the corresponding data compressed using the parcellation using
# parcels=2000.
fmri_compressed = ward.inverse_transform(fmri_reduced)

plotting.plot_epi(index_img(fmri_compressed, 0),
                  cut_coords=cut_coords,
                  title='Ward compressed representation (2000 parcels)',
                  vmin=vmin, vmax=vmax, display_mode='xz')
# As you can see below, this approximation is almost good, although there
# are only 2000 parcels, instead of the original 60000 voxels

#########################################################################
# Brain parcellations with KMeans Clustering
# ------------------------------------------
vmin = np.min(mean_func_img.get_data())
vmax = np.max(mean_func_img.get_data())

plotting.plot_epi(mean_func_img,
                  cut_coords=cut_coords,
                  title='Original (%i voxels)' % original_voxels,
                  vmax=vmax,
                  vmin=vmin,
                  display_mode='xz')

# A reduced dataset can be created by taking the parcel-level average:
# Note that Parcellation objects with any method have the opportunity to
# use a `transform` call that modifies input features. Here it reduces their
# dimension. Note that we `fit` before calling a `transform` so that average
# signals can be created on the brain parcellations with fit call.
fmri_reduced = ward.transform(dataset.func)

# Display the corresponding data compressed using the parcellation using
# parcels=2000.
fmri_compressed = ward.inverse_transform(fmri_reduced)

plotting.plot_epi(index_img(fmri_compressed, 0),
                  cut_coords=cut_coords,
                  title='Ward compressed representation (2000 parcels)',
                  vmin=vmin,
                  vmax=vmax,
                  display_mode='xz')
# As you can see below, this approximation is almost good, although there
# are only 2000 parcels, instead of the original 60000 voxels

#########################################################################