Ejemplo n.º 1
0
def build_network(sim, order=1000, epsilon=0.1, delay=1.5, J=0.1, theta=20.0,
                  tau=20.0, tau_syn=0.1, tau_refrac=2.0, v_reset=10.0,
                  R=1.5, g=5, eta=2, seed=None):

    NE = 4 * order
    NI = 1 * order
    CE = int(epsilon * NE)  # number of excitatory synapses per neuron
    CI = int(epsilon * NI)  # number of inhibitory synapses per neuron

    CMem = tau/R

    J_unit = psp_height(tau, R, tau_syn)
    J_ex  = J / J_unit
    J_in  = -g * J_ex

    nu_th = theta / (J_ex * CE * R * tau_syn)
    nu_ex = eta * nu_th
    p_rate = 1000.0 * nu_ex * CE

    assert seed is not None
    rng = NumpyRNG(seed)

    neuron_params = {
        "nrn_tau": tau,
        "nrn_v_threshold": theta,
        "nrn_refractory_period": tau_refrac,
        "nrn_v_reset": v_reset,
        "nrn_R": R,
        "syn_tau": tau_syn
    }

    celltype = Dynamics(name='iaf',
                        subnodes={'nrn': read("sources/BrunelIaF.xml")['BrunelIaF'],
                                  'syn': read("sources/AlphaPSR.xml")['AlphaPSR']})
    celltype.connect_ports('syn.i_synaptic', 'nrn.i_synaptic')

    exc = sim.Population(NE, nineml_cell_type('BrunelIaF', celltype, {'syn': 'syn_weight'})(**neuron_params))
    inh = sim.Population(NI, nineml_cell_type('BrunelIaF', celltype, {'syn': 'syn_weight'})(**neuron_params))
    all = exc + inh
    all.initialize(v=RandomDistribution('uniform', (0.0, theta), rng=rng))

    stim = sim.Population(NE + NI, nineml_cell_type('Poisson', read("sources/Poisson.xml")['Poisson'], {})(rate=p_rate))

    print("Connecting network")

    exc_synapse = sim.StaticSynapse(weight=J_ex, delay=delay)
    inh_synapse = sim.StaticSynapse(weight=J_in, delay=delay)

    input_connections = sim.Projection(stim, all, sim.OneToOneConnector(), exc_synapse, receptor_type="syn")
    exc_connections = sim.Projection(exc, all, sim.FixedNumberPreConnector(n=CE), exc_synapse, receptor_type="syn")  # check is Pre not Post
    inh_connections = sim.Projection(inh, all, sim.FixedNumberPreConnector(n=CI), inh_synapse, receptor_type="syn")

    return stim, exc, inh
Ejemplo n.º 2
0
 def test_write_read_roundtrip(self):
     for version in (1.0, 2.0):
         if version == 1.0:
             docs = v1_safe_docs
         else:
             docs = list(instances_of_all_types['NineML'].values())
         for format in format_to_serializer:  # @ReservedAssignment
             try:
                 ext = format_to_ext[format]
             except KeyError:
                 continue  # ones that can't be written to file (e.g. dict)
             for i, document in enumerate(docs):
                 try:
                     doc = document.clone()
                 except:
                     document.clone()
                     raise
                 url = os.path.join(
                     self._tmp_dir, 'test{}v{}{}'.format(i, version, ext))
                 nineml.write(url, doc, format=format, version=version,
                              indent=2)
                 if self.print_serialized and format in self.printable:
                     with open(url) as f:
                         print(f.read())
                 reread_doc = nineml.read(url, reload=True)
                 self.assertTrue(doc.equals(reread_doc),
                                 doc.find_mismatch(reread_doc))
Ejemplo n.º 3
0
def function():
    for version in (1.0, 2.0):
        if version == 1.0:
            docs = v1_safe_docs
        else:
            docs = list(instances_of_all_types['NineML'].values())
        for format in format_to_serializer:  # @ReservedAssignment
            try:
                ext = format_to_ext[format]
            except KeyError:
                continue  # ones that can't be written to file (e.g. dict)
            for i, document in enumerate(docs):
                doc = document.clone()
                url = os.path.join(_tmp_dir,
                                   'test{}v{}{}'.format(i, version, ext))
                nineml.write(url,
                             doc,
                             format=format,
                             version=version,
                             indent=2)
                if print_serialized and format in printable:
                    with open(url) as f:
                        print(f.read())
                reread_doc = nineml.read(url, reload=True)  # @UnusedVariable

    shutil.rmtree(_tmp_dir)
Ejemplo n.º 4
0
 def _ref_network(self, simulator, external_input=None, **kwargs):
     if simulator == 'nest':
         NetworkClass = NetworkNEST
         Simulation = NESTSimulation
     elif simulator == 'neuron':
         NetworkClass = NetworkNEURON
         Simulation = NeuronSimulation
     else:
         assert False
     model = nineml.read(self.reduced_brunel_path).as_network(
         'ReducedBrunel')
     with Simulation(dt=self.dt * un.ms, seed=self.seed,
                     **model.delay_limits()) as sim:
         network = NetworkClass(model, **kwargs)
         if external_input is not None:
             network.component_array('Ext').play('spike_input__cell',
                                                 external_input)
         for pop_name in self.recorded_pops:
             network.component_array(pop_name).record('spike_output')
         sim.run(self.t_stop * un.ms)
     recordings = {}
     for pop_name in self.recorded_pops:
         recordings[pop_name] = network.component_array(pop_name).recording(
             'spike_output')
     return recordings
Ejemplo n.º 5
0
 def test_load_and_validate_all(self):
     for p in self.iterate_xml_paths(os.path.join(self.repo_root, 'xml')):
         # Just check to see whether all elements of the document load
         # without error
         all_elems = list(nineml.read(p).elements)
         
          
Ejemplo n.º 6
0
 def read(self, filename):
     document = nineml.read(filename)
     return Network(
         name='root',
         populations=dict((p.name, p) for p in document.populations),
         projections=dict((p.name, p) for p in document.projections),
         selections=dict((s.name, s) for s in document.selections))
Ejemplo n.º 7
0
 def test_write_read_roundtrip(self):
     for version in (1.0, 2.0):
         if version == 1.0:
             docs = v1_safe_docs
         else:
             docs = list(instances_of_all_types['NineML'].values())
         for format in format_to_serializer:  # @ReservedAssignment
             try:
                 ext = format_to_ext[format]
             except KeyError:
                 continue  # ones that can't be written to file (e.g. dict)
             for i, document in enumerate(docs):
                 try:
                     doc = document.clone()
                 except:
                     document.clone()
                     raise
                 url = os.path.join(self._tmp_dir,
                                    'test{}v{}{}'.format(i, version, ext))
                 nineml.write(url,
                              doc,
                              format=format,
                              version=version,
                              indent=2)
                 if self.print_serialized and format in self.printable:
                     with open(url) as f:
                         print(f.read())
                 reread_doc = nineml.read(url, reload=True)
                 self.assertTrue(doc.equals(reread_doc),
                                 doc.find_mismatch(reread_doc))
Ejemplo n.º 8
0
def write_nmodl(nineml_file, weight_variables={}, hierarchical_mode=False):

    components = nineml.read(nineml_file)

    output_dir = os.path.dirname(nineml_file)
    basename = os.path.basename(nineml_file)
    if len(components) == 0:
        print 'No components found in file!'
    elif len(components) == 1:
        output_filename = basename.replace(".xml", ".mod").replace("-", "_")
        print "Converting %s to %s" % (nineml_file, output_filename)
        write_nmodldirect(component=components[0],
                          mod_filename=os.path.join(output_dir,
                                                    output_filename),
                          weight_variables=weight_variables,
                          hierarchical_mode=hierarchical_mode)
    else:
        for c in components.itervalues():
            if isinstance(c, al.DynamicsClass):
                output_filename = basename.replace(".xml",
                                                   "_%s.mod" % c.name).replace("-",
                                                                           "_")
                print "Converting %s to %s" % (nineml_file, output_filename)
                write_nmodldirect(component=c,
                                  mod_filename=os.path.join(output_dir,
                                                            output_filename),
                                  weight_variables=weight_variables,
                                  hierarchical_mode=hierarchical_mode)
Ejemplo n.º 9
0
 def test_convert_format(self):
     in_path = './' + os.path.join(os.path.relpath(ninemlcatalog.root),
                                   'neuron', 'Izhikevich.xml')
     out_path = os.path.join(self.tmpdir, 'Izhikevich.yml')
     print(out_path)
     args = '{} {}'.format(in_path, out_path)
     convert.run(args.split())
     # Check the output file is yaml
     with open(out_path) as f:
         contents = yaml.load(f)
     self.assertEqual(list(contents.keys()), [b'NineML'])
     # Check the converted document is equivalent
     in_doc = read(in_path)
     out_doc = read(out_path)
     in_doc._url = None
     out_doc._url = None
     self.assertEqual(in_doc, out_doc)
Ejemplo n.º 10
0
 def test_convert_version(self):
     in_path = './' + os.path.join(os.path.relpath(ninemlcatalog.root),
                                   'neuron', 'Izhikevich.xml')
     out_path = os.path.join(self.tmpdir, 'Izhikevich.xml')
     args = '--nineml_version 2 {} {}'.format(in_path, out_path)
     convert.run(args.split())
     # Check the document has been written in version 2 format
     with open(out_path) as f:
         xml = etree.parse(f)
         root = xml.getroot()
     self.assertEqual(root.tag, '{http://nineml.net/9ML/2.0}NineML')
     # Check the converted document is equivalent
     in_doc = read(in_path)
     out_doc = read(out_path)
     in_doc._url = None
     out_doc._url = None
     self.assertEqual(in_doc, out_doc)
Ejemplo n.º 11
0
 def test_convert_format(self):
     in_path = './' + os.path.join(os.path.relpath(ninemlcatalog.root),
                                   'neuron', 'Izhikevich.xml')
     out_path = os.path.join(self.tmpdir, 'Izhikevich.yml')
     print(out_path)
     args = '{} {}'.format(in_path, out_path)
     convert.run(args.split())
     # Check the output file is yaml
     with open(out_path) as f:
         contents = yaml.load(f)
     self.assertEqual(list(contents.keys()), [b'NineML'])
     # Check the converted document is equivalent
     in_doc = read(in_path)
     out_doc = read(out_path)
     in_doc._url = None
     out_doc._url = None
     self.assertEqual(in_doc, out_doc)
Ejemplo n.º 12
0
 def test_convert_version(self):
     in_path = './' + os.path.join(os.path.relpath(ninemlcatalog.root),
                                   'neuron', 'Izhikevich.xml')
     out_path = os.path.join(self.tmpdir, 'Izhikevich.xml')
     args = '--nineml_version 2 {} {}'.format(in_path, out_path)
     convert.run(args.split())
     # Check the document has been written in version 2 format
     with open(out_path) as f:
         xml = etree.parse(f)
         root = xml.getroot()
     self.assertEqual(root.tag, '{http://nineml.net/9ML/2.0}NineML')
     # Check the converted document is equivalent
     in_doc = read(in_path)
     out_doc = read(out_path)
     in_doc._url = None
     out_doc._url = None
     self.assertEqual(in_doc, out_doc)
Ejemplo n.º 13
0
 def test_to_xml(self):
     context = read(os.path.join(examples_dir, 'normal.xml'))
     comp_class = context['NormalDistribution']
     xml = comp_class.to_xml()
     self.assertEquals(_Element, type(xml))
     with tempfile.TemporaryFile() as f:
         ElementTree(xml).write(f, encoding="UTF-8", pretty_print=True,
                                xml_declaration=True)
Ejemplo n.º 14
0
 def test_to_xml(self):
     document = read(os.path.join(examples_dir, 'AllToAll.xml'))
     comp_class = document['AllToAll']
     xml = comp_class.to_xml()
     self.assertEquals(_Element, type(xml))
     with tempfile.TemporaryFile() as f:
         ElementTree(xml).write(f, encoding="UTF-8", pretty_print=True,
                                xml_declaration=True)
Ejemplo n.º 15
0
 def __init__(self, nineml_model, build_mode='lazy', **kwargs):
     if isinstance(nineml_model, basestring):
         nineml_model = nineml.read(nineml_model).as_network(
             name=os.path.splitext(os.path.basename(nineml_model))[0])
     elif isinstance(nineml_model, Document):
         if nineml_model.url is not None:
             name = os.path.splitext(os.path.basename(nineml_model.url))[0]
         else:
             name = "Anonymous"
         nineml_model = nineml_model.as_network(name=name)
     self._nineml = nineml_model.clone()
     # Get RNG for random distribution values and connectivity
     rng = self.Simulation.active().properties_rng
     if build_mode != 'build_only':
         self.nineml.resample_connectivity(
             connectivity_class=self.ConnectivityClass, rng=rng)
     (flat_comp_arrays, flat_conn_groups,
      flat_selections) = self._flatten_to_arrays_and_conns(self._nineml)
     self._component_arrays = {}
     # Build the PyNN populations
     # Add build args to distinguish models built for this network as
     # opposed to other networks
     build_url = kwargs.pop('build_url', nineml_model.url)
     build_version = nineml_model.name + kwargs.pop('build_version', '')
     for name, comp_array in flat_comp_arrays.items():
         self._component_arrays[name] = self.ComponentArrayClass(
             comp_array, build_mode=build_mode,
             build_url=build_url, build_version=build_version, **kwargs)
     self._selections = {}
     # Build the PyNN Selections
     for selection in flat_selections.values():
         # TODO: Assumes that selections are only concatenations (which is
         #       true for 9MLv1.0 but not v2.0)
         self._selections[selection.name] = self.SelectionClass(
             selection, *[self.component_array(p.name)
                          for p in selection.populations])
     if build_mode != 'build_only':
         # Set the connectivity objects of the projections to the
         # PyNNConnectivity class
         if self.nineml.connectivity_has_been_sampled():
             raise Pype9RuntimeError(
                 "Connections have already been sampled, please reset them"
                 " using 'resample_connectivity' before constructing "
                 "network")
         self._connection_groups = {}
         for name, conn_group in flat_conn_groups.items():
             try:
                 source = self._component_arrays[conn_group.source.name]
             except KeyError:
                 source = self._selections[conn_group.source.name]
             try:
                 destination = self._component_arrays[
                     conn_group.destination.name]
             except KeyError:
                 destination = self._selections[conn_group.destination.name]
             self._connection_groups[name] = self.ConnectionGroupClass(
                 conn_group, source=source, destination=destination)
         self._finalise_construction()
Ejemplo n.º 16
0
 def test_serialization(self):
     for ext in ext_to_format:
         fname = mkstemp(suffix=ext)[1]
         try:
             self.d.write(fname, register=False, preserve_order=True)
         except NineMLSerializerNotImportedError:
             continue
         reread_d = nineml.read(fname + '#d')
         self._test_indices(reread_d)
Ejemplo n.º 17
0
def nineml_document(doc_path):
    if doc_path.startswith(CATALOG_PREFIX):
        model = ninemlcatalog.load(doc_path[len(CATALOG_PREFIX):])
    else:
        if (not doc_path.startswith('/') and not doc_path.startswith('./')
                and not doc_path.startswith('../')):
            doc_path = './' + doc_path
        model = nineml.read(doc_path, relative_to=os.getcwd())
    return model
Ejemplo n.º 18
0
 def read(self, filename):
     document = nineml.read(filename)
     return Network(name='root',
                    populations=dict(
                        (p.name, p) for p in document.populations),
                    projections=dict(
                        (p.name, p) for p in document.projections),
                    selections=dict(
                        (s.name, s) for s in document.selections))
Ejemplo n.º 19
0
 def test_serialization(self):
     for ext in ext_to_format:
         fname = mkstemp(suffix=ext)[1]
         try:
             self.d.write(fname, register=False, preserve_order=True)
         except NineMLSerializerNotImportedError:
             continue
         reread_d = nineml.read(fname + '#d')
         self._test_indices(reread_d)
Ejemplo n.º 20
0
def load(path, name=None):
    """
    Retrieves a model from the catalog from the given path
    """
    doc = nineml.read(get_full_path(path))
    if name is not None:
        elem = doc[name]
    else:
        elem = doc
    return elem
Ejemplo n.º 21
0
 def test_to_xml(self):
     document = read(os.path.join(examples_dir, 'AllToAll.xml'))
     comp_class = document['AllToAll']
     xml = comp_class.to_xml()
     self.assertEquals(_Element, type(xml))
     with tempfile.TemporaryFile() as f:
         ElementTree(xml).write(f,
                                encoding="UTF-8",
                                pretty_print=True,
                                xml_declaration=True)
Ejemplo n.º 22
0
def load(path, name=None):
    """
    Retrieves a model from the catalog from the given path
    """
    doc = nineml.read(get_full_path(path))
    if name is not None:
        elem = doc[name]
    else:
        elem = doc
    return elem
Ejemplo n.º 23
0
def nineml_document(doc_path):
    if doc_path.startswith(CATALOG_PREFIX):
        model = ninemlcatalog.load(doc_path[len(CATALOG_PREFIX):])
    else:
        if (not doc_path.startswith('/') and
            not doc_path.startswith('./') and
                not doc_path.startswith('../')):
            doc_path = './' + doc_path
        model = nineml.read(doc_path, relative_to=os.getcwd())
    return model
Ejemplo n.º 24
0
 def test_url_resolution(self):
     tmp_dir = tempfile.mkdtemp()
     os.chdir(tmp_dir)
     write(self.tmp_path, dynA, dynB)
     reread_dynA = read('{}#dynA'.format(self.tmp_path))
     self.assertEqual(dynA, reread_dynA)
     # Read again using document cache via Dynamics Properties
     dynBProps = DynamicsProperties(
         name='dynBProps',
         definition='{}#dynB'.format(os.path.join(tmp_dir, self.tmp_path)),
         properties={'P1': 1, 'P2': 2, 'P3': 3})
     self.assertEqual(dynB, dynBProps.component_class)
Ejemplo n.º 25
0
 def test_url_resolution(self):
     tmp_dir = tempfile.mkdtemp()
     os.chdir(tmp_dir)
     write(self.tmp_path, dynA, dynB)
     reread_dynA = read('{}#dynA'.format(self.tmp_path))
     self.assertEqual(dynA, reread_dynA)
     # Read again using document cache via Dynamics Properties
     dynBProps = DynamicsProperties(
         name='dynBProps',
         definition='{}#dynB'.format(os.path.join(tmp_dir, self.tmp_path)),
         properties={
             'P1': 1,
             'P2': 2,
             'P3': 3
         })
     self.assertEqual(dynB, dynBProps.component_class)
Ejemplo n.º 26
0
def main():
    h('{nrn_load_dll("'+LIBNRNMECHPATH+'")}')

    dcn = nineml.read(os.path.join(
        os.environ['HOME'], 'git', 'CerebellarNuclei', '9ml',
        'dcn.xml'))['DCN']
    
    mc = MultiCompartmentSplit(dcn)
    #dcn_cell = CellMetaClass(dcn)

    mc.check_complexity_file()
    mc.setup_sections()
    mc.setup_mechanisms()
    mc.multisplit()
    mc.set_vec_t()
    mc.set_vec_v('DCN[100]')
    #mc.show_all_sections()

    
    mc.run_simulation()

    mc.show_info()
    mc.show_plot()
Ejemplo n.º 27
0
def function():
    for version in (1.0, 2.0):
        if version == 1.0:
            docs = v1_safe_docs
        else:
            docs = list(instances_of_all_types['NineML'].values())
        for format in format_to_serializer:  # @ReservedAssignment
            try:
                ext = format_to_ext[format]
            except KeyError:
                continue  # ones that can't be written to file (e.g. dict)
            for i, document in enumerate(docs):
                doc = document.clone()
                url = os.path.join(
                    _tmp_dir, 'test{}v{}{}'.format(i, version, ext))
                nineml.write(url, doc, format=format, version=version,
                             indent=2)
                if print_serialized and format in printable:
                    with open(url) as f:
                        print(f.read())
                reread_doc = nineml.read(url, reload=True)  # @UnusedVariable

    shutil.rmtree(_tmp_dir)
Ejemplo n.º 28
0
 def _ref_network(self, simulator, external_input=None, **kwargs):
     nest.ResetKernel()
     if simulator == 'nest':
         NetworkClass = NetworkNEST
         pyNN_simulator = pyNN.nest.simulator.state
     elif simulator == 'neuron':
         NetworkClass = NetworkNEURON
         pyNN_simulator = pyNN.neuron.simulator.state
     else:
         assert False
     model = nineml.read(self.reduced_brunel_path).as_network(
         'ReducedBrunel')
     network = NetworkClass(model, **kwargs)
     if external_input is not None:
         network.component_array('Ext').play('spike_input__cell',
                                             external_input)
     for pop_name in self.recorded_pops:
         network.component_array(pop_name).record('spikes')
     pyNN_simulator.run(self.t_stop)
     recordings = {}
     for pop_name in self.recorded_pops:
         recordings[pop_name] = network.component_array(pop_name).recording(
             'spikes')
     return recordings
Ejemplo n.º 29
0
 def test_xml_540degree_roundtrip(self):
     document1 = read(self.test_file)
     xml = document1.to_xml()
     document2 = load(xml, read_from=self.test_file)
     self.assertEquals(document1, document2)
Ejemplo n.º 30
0
 def test_load(self):
     document = read(os.path.join(examples_dir, 'Normal.xml'))
     self.assertEquals(type(document['NormalDistribution']),
                       DistributionClass)
Ejemplo n.º 31
0
 def test_xml_540degree_roundtrip(self):
     context1 = read(self.test_file)
     xml = context1.to_xml()
     context2 = load(xml, read_from=self.test_file)
     self.assertEquals(context1, context2)
Ejemplo n.º 32
0
from pyNN.neuron.nineml import nineml_cell_type
from pyNN.utility.plotting import Figure, Panel


t_stop = 100000
dt = 0.1

sim.setup(timestep=dt)

cell_parameters = {'v_reset': 10.0, 'tau_m': 20.0, 'v_rest': 0.0,
                   'tau_refrac': 2.0, 'v_thresh': 20.0, 'tau_syn_E': 2.0}
p = sim.Population(1, sim.IF_curr_alpha(**cell_parameters))
p.initialize(v=0.0)

rate = 20
stim = sim.Population(1, nineml_cell_type('Poisson', read("../sources/Poisson.xml")['Poisson'], {})(rate=rate))
stim.initialize(t_next=numpy.random.exponential(1000/rate))

weight = 0.1
delay = 0.5
prj = sim.Projection(stim, p,
                     sim.AllToAllConnector(),
                     sim.StaticSynapse(weight=weight, delay=delay),
                     receptor_type='excitatory')

stim.record('spikes')
p.record('v')

sim.run(t_stop)

nrn_data = p.get_data().segments[0]
Ejemplo n.º 33
0
 def test_prototype_xml_540degree_roundtrip(self):
     test_file = os.path.join(examples_dir, 'HodgkinHuxleyModified.xml')
     document1 = read(test_file)
     xml = document1.to_xml()
     document2 = load(xml, read_from=test_file)
     self.assertEquals(document1, document2)
cell_parameters = {
    'v_reset': 10.0,
    'tau_m': 20.0,
    'v_rest': 0.0,
    'tau_refrac': 2.0,
    'v_thresh': 20.0,
    'tau_syn_E': 2.0
}
p = sim.Population(1, sim.IF_curr_alpha(**cell_parameters))
p.initialize(v=0.0)

rate = 20
stim = sim.Population(
    1,
    nineml_cell_type('Poisson',
                     read("../sources/Poisson.xml")['Poisson'], {})(rate=rate))
stim.initialize(t_next=numpy.random.exponential(1000 / rate))

weight = 0.1
delay = 0.5
prj = sim.Projection(stim,
                     p,
                     sim.AllToAllConnector(),
                     sim.StaticSynapse(weight=weight, delay=delay),
                     receptor_type='excitatory')

stim.record('spikes')
p.record('v')

sim.run(t_stop)
Ejemplo n.º 35
0
 def test_xml_540degree_roundtrip(self):
     document1 = read(self.test_file)
     xml = document1.to_xml()
     document2 = load(xml, read_from=self.test_file)
     self.assertEquals(document1.items(), document2.items())
Ejemplo n.º 36
0
 def test_mismatch_dimension(self):
     context = read(os.path.join(examples_dir, 'HodgkinHuxleyBadUnits.xml'))
     with self.assertRaises(NineMLUnitMismatchError):
         context['HodgkinHuxleyBadUnits']
Ejemplo n.º 37
0
 def test_load(self):
     context = read(os.path.join(examples_dir, 'normal.xml'))
     self.assertEquals(type(context['NormalDistribution']), ComponentClass)
Ejemplo n.º 38
0
 def test_load(self):
     document = read(os.path.join(examples_dir, 'Normal.xml'))
     self.assertEquals(type(document['NormalDistribution']),
                       DistributionClass)
Ejemplo n.º 39
0
 def test_load(self):
     document = read(os.path.join(examples_dir, 'AllToAll.xml'))
     self.assertEquals(type(document['AllToAll']),
                       ConnectionRuleClass)
Ejemplo n.º 40
0
 def test_mismatch_dimension(self):
     document = read(os.path.join(examples_dir, 'HodgkinHuxleyBadUnits.xml'))
     with self.assertRaises(NineMLUnitMismatchError):
         document['HodgkinHuxleyBadUnits']
Ejemplo n.º 41
0
 def test_component_xml_540degree_roundtrip(self):
     test_file = os.path.join(examples_dir, 'HodgkinHuxley.xml')
     document1 = read(test_file)
     xml = document1.to_xml()
     document2 = load(xml, read_from=test_file)
     self.assertEquals(document1, document2)
Ejemplo n.º 42
0
def get_Izh_FS_component():
    """
    Load Fast spiking Izhikevich XML definition from file and parse into
    Abstraction Layer of Python API.
    """
    return nineml.read('NineML_Izh_FS.xml')['IzhikevichClass']
Ejemplo n.º 43
0
 def test_load_and_validate_all(self):
     for p in self.iterate_xml_paths(os.path.join(self.repo_root, 'xml')):
         # Just check to see whether all elements of the document load
         # without error
         all_elems = list(nineml.read(p).elements)
Ejemplo n.º 44
0
 def test_prototype_xml_540degree_roundtrip(self):
     test_file = os.path.join(examples_dir, 'HodgkinHuxleyModified.xml')
     context1 = read(test_file)
     xml = context1.to_xml()
     context2 = load(xml, read_from=test_file)
     self.assertEquals(context1, context2)
Ejemplo n.º 45
0
    evs = cm.getTrajEventTimes('test')

    plt.figure(8)
    plt.plot(pts['t'], pts['V'], 'k')
    plt.title('Combined passive response model')
    plt.xlabel('t')
    plt.ylabel('V')


# ==========

print("Testing Hodgkin Huxley cell model")
#test_HH()

print("Testing adaptive Integrate and Fire cell model")
#test_aeIF()

#print("Testing compound cell model")
#test_compound()

print("Testing basic Izhikevich cell model")
#test_Izh()

fs = nineml.read('NineML_Izh_FS.xml')

print("Testing Izhikevich fast spiking cell model from XML import")
print("   at three input current levels")
test_Izh_FS([100, 200, 400])

plt.show()
Ejemplo n.º 46
0
cm = cell_parameters['nrn_tau']/cell_parameters['nrn_R']
nu_thresh = 1000.0 * cell_parameters['nrn_v_threshold'] * cm / (
               w_eff * cell_parameters['nrn_tau'] * cell_parameters['syn_tau'])

print("\ntau = {}, R = {}, tau_syn = {}".format(cell_parameters['nrn_tau'],
                                                cell_parameters["nrn_R"],
                                                cell_parameters["syn_tau"]))
print("\nEffective weight = {} nA".format(w_eff))
print("Threshold rate = {} Hz\n".format(nu_thresh))

# PyNN/NineML simulation

sim.setup(timestep=dt)

celltype = Dynamics(name='iaf',
                    subnodes={'nrn': read("../sources/BrunelIaF.xml")['BrunelIaF'],
                              'syn': read("../sources/AlphaPSR.xml")['AlphaPSR']})
celltype.connect_ports('syn.i_synaptic', 'nrn.i_synaptic')
p1 = sim.Population(4, nineml_cell_type('BrunelIaF', celltype, {'syn': 'syn_weight'})(**cell_parameters))
cell_parameters_no_spikes = copy(cell_parameters)
cell_parameters_no_spikes["nrn_v_threshold"] = 1000.0
p2 = sim.Population(4, nineml_cell_type('BrunelIaF', celltype, {'syn': 'syn_weight'})(**cell_parameters_no_spikes))

stim = sim.Population(4,
                      nineml_cell_type('Poisson', read("../sources/Poisson.xml")['Poisson'], {})(
                          rate=[0.5*nu_thresh, nu_thresh, 2*nu_thresh, 0.0]))

prj1 = sim.Projection(stim, p1,
                      sim.OneToOneConnector(),
                      sim.StaticSynapse(weight=w_eff, delay=delay),
                      receptor_type='syn')
Ejemplo n.º 47
0
Archivo: base.py Proyecto: tclose/PyPe9
 def __init__(self, nineml_model, build_mode='lazy', timestep=None,
              min_delay=None, max_delay=None, rng=None, **kwargs):
     if isinstance(nineml_model, basestring):
         nineml_model = nineml.read(nineml_model).as_network(
             name=os.path.splitext(os.path.basename(nineml_model))[0])
     elif isinstance(nineml_model, Document):
         if nineml_model.url is not None:
             name = os.path.splitext(os.path.basename(nineml_model.url))[0]
         else:
             name = "Anonymous"
         nineml_model = nineml_model.as_network(name=name)
     self._nineml = deepcopy(nineml_model)
     timestep = timestep if timestep is not None else self.time_step
     min_delay = min_delay if min_delay is not None else self.min_delay
     max_delay = max_delay if max_delay is not None else self.max_delay
     self._set_simulation_params(timestep=timestep, min_delay=min_delay,
                                 max_delay=max_delay, **kwargs)
     self._rng = rng if rng else NumpyRNG()
     if build_mode != 'build_only':
         # Convert
         self.nineml.resample_connectivity(
             connectivity_class=self.ConnectivityClass)
     (flat_comp_arrays, flat_conn_groups,
      flat_selections) = self._flatten_to_arrays_and_conns(self._nineml)
     self._component_arrays = {}
     code_gen = self.CellCodeGenerator()
     # Build the PyNN populations
     for name, comp_array in flat_comp_arrays.iteritems():
         self._component_arrays[name] = self.ComponentArrayClass(
             comp_array, rng=self._rng, build_mode=build_mode,
             build_dir=code_gen.get_build_dir(
                 self.nineml.url, name, group=self.nineml.name), **kwargs)
     self._selections = {}
     # Build the PyNN Selections
     for selection in flat_selections.itervalues():
         # TODO: Assumes that selections are only concatenations (which is
         #       true for 9MLv1.0 but not v2.0)
         self._selections[selection.name] = self.SelectionClass(
             selection, *[self.component_array(p.name)
                          for p in selection.populations])
     if build_mode != 'build_only':
         # Set the connectivity objects of the projections to the
         # PyNNConnectivity class
         if self.nineml.connectivity_has_been_sampled():
             raise Pype9RuntimeError(
                 "Connections have already been sampled, please reset them"
                 " using 'resample_connectivity' before constructing "
                 "network")
         self._connection_groups = {}
         for name, conn_group in flat_conn_groups.iteritems():
             try:
                 source = self._component_arrays[conn_group.source.name]
             except KeyError:
                 source = self._selections[conn_group.source.name]
             try:
                 destination = self._component_arrays[
                     conn_group.destination.name]
             except KeyError:
                 destination = self._selections[conn_group.destination.name]
             self._connection_groups[name] = self.ConnectionGroupClass(
                 conn_group, source=source, destination=destination,
                 rng=self._rng)
         self._finalise_construction()
Ejemplo n.º 48
0
 def test_load(self):
     document = read(os.path.join(examples_dir, 'AllToAll.xml'))
     self.assertEquals(type(document['AllToAll']), ConnectionRuleClass)
Ejemplo n.º 49
0
def read(url, class_map=class_map, **kwargs):
    return nineml.read(url, class_map=class_map, **kwargs)
Ejemplo n.º 50
0
weight = 0.1  # EPSP height from a single spike received at resting potential
scale_factor = psp_height(cell_parameters['nrn_tau'],
                          cell_parameters["nrn_R"],
                          cell_parameters["syn_tau"])
w_eff = weight/scale_factor
delay = 0.5

print("\nEffective weight = {} nA\n".format(w_eff))


# PyNN/NineML simulation

sim.setup(timestep=dt)

celltype = Dynamics(name='iaf',
                    subnodes={'nrn': read("../sources/BrunelIaF.xml")['BrunelIaF'],
                              'syn': read("../sources/AlphaPSR.xml")['AlphaPSR']})
celltype.connect_ports('syn.i_synaptic', 'nrn.i_synaptic')

p = sim.Population(2, nineml_cell_type('BrunelIaF', celltype, {'syn': 'syn_weight'})(**cell_parameters))
stim = sim.Population(1, sim.SpikeSourceArray(spike_times=spike_times))

prj = sim.Projection(stim, p,
                     sim.AllToAllConnector(),
                     sim.StaticSynapse(weight=w_eff, delay=delay),
                     receptor_type='syn')

p.record(['nrn_v', 'syn_a', 'syn_b'])

sim.run(t_stop)
Ejemplo n.º 51
0
def read(url, class_map=class_map, **kwargs):
    return nineml.read(url, class_map=class_map, **kwargs)