Ejemplo n.º 1
0
def test_step_function():
    # test step function
    # step function is a function of t
    s = step_function([0,4,5],[2,4,6])
    tval = np.array([-0.1,0,3.9,4,4.1,5.1])
    lam = lambdify(t, s)
    yield assert_array_equal(lam(tval), [0, 2, 2, 4, 4, 6])
    s = step_function([0,4,5],[4,2,1])
    lam = lambdify(t, s)
    yield assert_array_equal(lam(tval), [0, 4, 4, 2, 2, 1])
Ejemplo n.º 2
0
def test_alias2():
    f = F.aliased_function('f', lambda x: 2*x)
    g = F.aliased_function('f', lambda x: np.sqrt(x))
    x = sympy.Symbol('x')

    l1 = aliased.lambdify(x, f(x))
    l2 = aliased.lambdify(x, g(x))

    yield assert_equal, str(f(x)), str(g(x))
    yield assert_equal, l1(3), 6
    yield assert_equal, l2(3), np.sqrt(3)
Ejemplo n.º 3
0
def test_blocks():
    on_off = [[1,2],[3,4]]
    tval = np.array([0.4,1.4,2.4,3.4])
    b = blocks(on_off)
    lam = lambdify(t, b)
    yield assert_array_equal(lam(tval),
                             [0, 1, 0, 1])
    b = blocks(on_off, amplitudes=[3,5])
    lam = lambdify(t, b)
    yield assert_array_equal(lam(tval),
                             [0, 3, 0, 5])
Ejemplo n.º 4
0
def test_1d():
    B = gen_BrownianMotion()
    Bs = aliased_function("B", B)
    t = sympy.Symbol('t')
    expr = 3*sympy.exp(Bs(t)) + 4
    expected = 3*np.exp(B.y)+4
    ee_vec = lambdify(t, expr)
    yield assert_almost_equal(ee_vec(B.x), expected)
    # with any arbitrary symbol
    b = sympy.Symbol('b')
    expr = 3*sympy.exp(Bs(b)) + 4
    ee_vec = lambdify(b, expr)
    yield assert_almost_equal(ee_vec(B.x), expected)
Ejemplo n.º 5
0
def test_vectorize():
    theta = sympy.Symbol('theta')
    num_func = lambdify(theta, sympy.cos(theta))
    yield assert_equal(num_func(0), 1)
    # we don't need to do anything for a naturally numpy'ed function
    yield assert_array_almost_equal(num_func([0, np.pi]), [1, -1])
    # but we do for single valued functions
    func = aliased_function('f', lambda x: x**2)
    num_func = lambdify(theta, func(theta))
    yield assert_equal(num_func(2), 4)
    # ** on a list raises a type error
    yield assert_raises(TypeError, num_func, [2, 3])
    # so vectorize
    num_func = vectorize(func(theta), theta)
Ejemplo n.º 6
0
def test_aliased_function():
    # Here we check if the default returned functions are anonymous - in
    # the sense that we can have more than one function with the same name
    f = aliased_function('f', lambda x: 2*x)
    g = aliased_function('f', lambda x: np.sqrt(x))
    l1 = lambdify(x, f(x))
    l2 = lambdify(x, g(x))
    yield assert_equal(str(f(x)), str(g(x)))
    yield assert_equal(l1(3), 6)
    yield assert_equal(l2(3), np.sqrt(3))
    # check that we can pass in a sympy function as input
    func = sympy.Function('myfunc')
    yield assert_false(hasattr(func, 'alias'))
    f = aliased_function(func, lambda x: 2*x)
    yield assert_true(hasattr(func, 'alias'))
Ejemplo n.º 7
0
def test_2d():
    B1, B2 = [gen_BrownianMotion() for _ in range(2)]
    B1s = aliased_function("B1", B1)
    B2s = aliased_function("B2", B2)
    s, t = sympy.symbols('s', 't')
    e = B1s(s)+B2s(t)
    ee = lambdify((s,t), e)
    yield assert_almost_equal(ee(B1.x, B2.x), B1.y + B2.y)
Ejemplo n.º 8
0
def test_define():
    t = F.Term('t')
    expr = sympy.exp(3*t)
    yield assert_equal, str(expr), 'exp(3*t)'

    newf = F.define('f', expr)
    yield assert_equal, str(newf), 'f(t)'

    f = aliased.lambdify(t, newf)

    tval = np.random.standard_normal((3,))
    yield assert_almost_equal, np.exp(3*tval), f(tval)
Ejemplo n.º 9
0
def test_interp():
    times = [0,4,5.]
    values = [2.,4,6]
    for int_func in (interp, linear_interp):
        s = int_func(times, values, bounds_error=False)
        tval = np.array([-0.1,0.1,3.9,4.1,5.1])
        res = lambdify(t, s)(tval)
        yield assert_array_equal(np.isnan(res),
                                 [True, False, False, False, True])
        yield assert_array_almost_equal(res[1:-1],
                                        [2.05, 3.95, 4.2])
        # specifying kind as linear is OK
        s = linear_interp(times, values, kind='linear')
Ejemplo n.º 10
0
def test_1d():
    B = gen_BrownianMotion()
    Bs = aliased_function("B", B)
    t = sympy.Symbol('t')
    def_t = sympy.DeferredVector('t')
    def_expr = 3*sympy.exp(Bs(def_t)) + 4
    expected = 3*np.exp(B.y)+4
    ee_lam = lambdify(def_t, def_expr)
    yield assert_almost_equal(ee_lam(B.x), expected)
    # use vectorize to do the deferred stuff
    expr = 3*sympy.exp(Bs(t)) + 4
    ee_vec = vectorize(expr)
    yield assert_almost_equal(ee_vec(B.x), expected)
    # with any arbitrary symbol
    b = sympy.Symbol('b')
    expr = 3*sympy.exp(Bs(b)) + 4
    ee_vec = vectorize(expr, b)
    yield assert_almost_equal(ee_vec(B.x), expected)
Ejemplo n.º 11
0
def test_convolve_functions():
    # replicate convolution
    # This is a square wave on [0,1]
    f1 = (t > 0) * (t < 1)
    # ff1 is the numerical implementation of same
    lam_f1 = lambdify(t, f1)
    ff1 = lambda x : lam_f1(x).astype(np.int)
    # The convolution of ``f1`` with itself is a triangular wave on
    # [0,2], peaking at 1 with height 1
    tri = convolve_functions(f1, f1, [0,2], 1.0e-3, name='conv')
    yield assert_equal(str(tri), 'conv(t)')
    ftri = lambdify(t, tri)
    time, value = numerical_convolve(ff1, ff1, [0, 2], 1.0e-3)
    y = ftri(time)
    # numerical convolve about the same as ours
    yield assert_array_almost_equal(value, y)
    # peak is at 1
    yield assert_array_almost_equal(time[np.argmax(y)], 1)
    # Flip the interval and get the same result
    tri = convolve_functions(f1, f1, [2, 0], 1.0e-3)
    ftri = lambdify(t, tri)
    y = ftri(time)
    yield assert_array_almost_equal(value, y)
    # offset square wave by 1
    f2 = (t > 1) * (t < 2)
    tri = convolve_functions(f1, f2, [0,3], 1.0e-3)
    ftri = lambdify(t, tri)
    y = ftri(time)
    yield assert_array_almost_equal(time[np.argmax(y)], 2)
    # offset both by 1 and start interval at one
    tri = convolve_functions(f2, f2, [1,3], 1.0e-3)
    ftri = lambdify(t, tri)
    # get numerical version
    lam_f2 = lambdify(t, f2)
    ff2 = lambda x : lam_f2(x).astype(np.int)
    time, value = numerical_convolve(ff2, ff2, [1, 3], 1.0e-3)
    # and our version, compare
    y = ftri(time)
    yield assert_array_almost_equal(y, value)
Ejemplo n.º 12
0
def test_lambdify():
    # Test lambdify with implemented functions
    # first test basic (sympy) lambdify
    f = sympy.cos
    yield assert_equal(lambdify(x, f(x))(0), 1)
    yield assert_equal(lambdify(x, 1 + f(x))(0), 2)
    yield assert_equal(lambdify((x, y), y + f(x))(0, 1), 2)
    # make an implemented function and test
    f = aliased_function("f", lambda x : x+100)
    yield assert_equal(lambdify(x, f(x))(0), 100)
    yield assert_equal(lambdify(x, 1 + f(x))(0), 101)
    yield assert_equal(lambdify((x, y), y + f(x))(0, 1), 101)
    # Error for functions with same name and different implementation
    f2 = aliased_function("f", lambda x : x+101)
    yield assert_raises(ValueError, lambdify, x, f(f2(x)))
    # our lambdify, like sympy's lambdify, can also handle tuples,
    # lists, dicts as expressions
    lam = lambdify(x, (f(x), x))
    yield assert_equal(lam(3), (103, 3))
    lam = lambdify(x, [f(x), x])
    yield assert_equal(lam(3), [103, 3])
    lam = lambdify(x, [f(x), (f(x), x)])
    yield assert_equal(lam(3), [103, (103, 3)])
    lam = lambdify(x, {f(x): x})
    yield assert_equal(lam(3), {103: 3})
    lam = lambdify(x, {f(x): x})
    yield assert_equal(lam(3), {103: 3})
    lam = lambdify(x, {x: f(x)})
    yield assert_equal(lam(3), {3: 103})