Ejemplo n.º 1
0
def get_signal(substitutions_a, substitutions_b,
	functional_file_template="~/ni_data/ofM.dr/preprocessing/{preprocessing_dir}/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_trial-{scan}.nii.gz",
	mask="~/ni_data/templates/DSURQEc_200micron_bin.nii.gz",
	):

	mask = path.abspath(path.expanduser(mask))

	out_t_names = []
	out_cope_names = []
	out_varcb_names = []
	for substitution in substitutions_a+substitutions_b:
		ts_name = path.abspath(path.expanduser("{subject}_{session}.mat".format(**substitution)))
		out_t_name = path.abspath(path.expanduser("{subject}_{session}_tstat.nii.gz".format(**substitution)))
		out_cope_name = path.abspath(path.expanduser("{subject}_{session}_cope.nii.gz".format(**substitution)))
		out_varcb_name = path.abspath(path.expanduser("{subject}_{session}_varcb.nii.gz".format(**substitution)))
		out_t_names.append(out_t_name)
		out_cope_names.append(out_cope_name)
		out_varcb_names.append(out_varcb_name)
		functional_file = path.abspath(path.expanduser(functional_file_template.format(**substitution)))
		if not path.isfile(ts_name):
			masker = NiftiMasker(mask_img=mask)
			ts = masker.fit_transform(functional_file).T
			ts = np.mean(ts, axis=0)
			header = "/NumWaves 1\n/NumPoints 1490\n/PPheights 1.308540e+01 4.579890e+00\n\n/Matrix"
			np.savetxt(ts_name, ts, delimiter="\n", header=header, comments="")
		glm = fsl.GLM(in_file=functional_file, design=ts_name, output_type='NIFTI_GZ')
		glm.inputs.contrasts = path.abspath(path.expanduser("run0.con"))
		glm.inputs.out_t_name = out_t_name
		glm.inputs.out_cope = out_cope_name
		glm.inputs.out_varcb_name = out_varcb_name
		print(glm.cmdline)
		glm_run=glm.run()

	copemerge = fsl.Merge(dimension='t')
	varcopemerge = fsl.Merge(dimension='t')
Ejemplo n.º 2
0
def create_2lvl(name="group"):
    import nipype.interfaces.fsl as fsl
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as niu

    wk = pe.Workflow(name=name)

    inputspec = pe.Node(niu.IdentityInterface(fields=['copes','varcopes',
                                                      'template', "contrasts",
                                                      "regressors"]),name='inputspec')

    model = pe.Node(fsl.MultipleRegressDesign(),name='l2model')

    #wk.connect(inputspec,('copes',get_len),model,'num_copes')
    wk.connect(inputspec, 'contrasts', model, "contrasts")
    wk.connect(inputspec, 'regressors', model, "regressors")

    mergecopes = pe.Node(fsl.Merge(dimension='t'),name='merge_copes')
    mergevarcopes = pe.Node(fsl.Merge(dimension='t'),name='merge_varcopes')

    flame = pe.Node(fsl.FLAMEO(run_mode='ols'),name='flameo')
    wk.connect(inputspec,'copes',mergecopes,'in_files')
    wk.connect(inputspec,'varcopes',mergevarcopes,'in_files')
    wk.connect(model,'design_mat',flame,'design_file')
    wk.connect(model,'design_con',flame, 't_con_file')
    wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
    wk.connect(mergevarcopes,'merged_file',flame,'var_cope_file')
    wk.connect(model,'design_grp',flame,'cov_split_file')

    bet = pe.Node(fsl.BET(mask=True,frac=0.3),name="template_brainmask")
    wk.connect(inputspec,'template',bet,'in_file')
    wk.connect(bet,'mask_file',flame,'mask_file')

    outputspec = pe.Node(niu.IdentityInterface(fields=['zstat','tstat','cope',
                                                       'varcope','mrefvars',
                                                       'pes','res4d','mask',
                                                       'tdof','weights','pstat']),
        name='outputspec')

    wk.connect(flame,'copes',outputspec,'cope')
    wk.connect(flame,'var_copes',outputspec,'varcope')
    wk.connect(flame,'mrefvars',outputspec,'mrefvars')
    wk.connect(flame,'pes',outputspec,'pes')
    wk.connect(flame,'res4d',outputspec,'res4d')
    wk.connect(flame,'weights',outputspec,'weights')
    wk.connect(flame,'zstats',outputspec,'zstat')
    wk.connect(flame,'tstats',outputspec,'tstat')
    wk.connect(flame,'tdof',outputspec,'tdof')
    wk.connect(bet,'mask_file',outputspec,'mask')

    ztopval = pe.MapNode(interface=fsl.ImageMaths(op_string='-ztop',
        suffix='_pval'),
        name='z2pval',
        iterfield=['in_file'])

    wk.connect(flame,'zstats',ztopval,'in_file')
    wk.connect(ztopval,'out_file',outputspec,'pstat')

    return wk
Ejemplo n.º 3
0
def modify_func_fm_run(FILEROOT):
    # Input is like sub-sub_run-01_epi.nii.gz (already in fmap dir)
    NII = FILEROOT + '.nii.gz'
    JSONFILE = FILEROOT + '.json'
    JSON_DAT = read_json(JSONFILE)
    TASKNAME = JSON_DAT['SeriesDescription'].split('_')[1]

    # Splits into AP/PA sets
    # sub-<label>[_ses-<label>][_acq-<label>][_ce-<label>]_dir-<label>[_run-<index>]_epi.json
    LROOT = FILEROOT.split('_')
    APNAME = LROOT[0] + '_dir-AP_' + '_'.join(LROOT[1:])
    PANAME = LROOT[0] + '_dir-PA_' + '_'.join(LROOT[1:])

    # Volumes 1/3 are AP, 2/4 PA
    SPLITTER = fsl.Split(in_file=NII, dimension='t', out_base_name='tmp')
    SPLITTER.run()

    MERGE_AP = fsl.Merge(in_files=['tmp0000.nii.gz', 'tmp0002.nii.gz'],
                         dimension='t',
                         merged_file=APNAME + '.nii.gz')
    MERGE_AP.run()

    MERGE_PA = fsl.Merge(in_files=['tmp0001.nii.gz', 'tmp0003.nii.gz'],
                         dimension='t',
                         merged_file=PANAME + '.nii.gz')
    MERGE_PA.run()

    os.remove(NII)
    os.remove(JSONFILE)
    for FILE in os.listdir('.'):
        if FILE.startswith('tmp0'):
            os.remove(FILE)

    # TODO: should we flip 1st volume and reorient?

    # Find which func data to use it for (right now assumes series description matches, may need to be more open).
    # Kludge: if stub of IntendedFor is there, populate with all runs
    os.chdir('..')

    INTENDEDFOR = []
    if 'IntendedFor' in JSON_DAT:
        STUB_TASKS = JSON_DAT['IntendedFor']
        for STUB in STUB_TASKS:
            INTEND_TASK = glob.glob('func/*task-{}_*bold.nii.gz'.format(STUB))
            INTENDEDFOR += INTEND_TASK
    else:
        INTENDEDFOR = glob.glob('func/*task-{}_*bold.nii.gz'.format(TASKNAME))

    JSON_DAT['IntendedFor'] = sorted(INTENDEDFOR)
    os.chdir('fmap')

    write_json(APNAME + '.json', JSON_DAT)
    write_json(PANAME + '.json', JSON_DAT)
Ejemplo n.º 4
0
def create_2lvl_rand(name="group_randomize"):
    import nipype.interfaces.fsl as fsl
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as niu
    import nipype.interfaces.io as nio
    wk = pe.Workflow(name=name)

    inputspec = pe.Node(
        niu.IdentityInterface(fields=['copes', 'varcopes', 'template']),
        name='inputspec')

    model = pe.Node(fsl.L2Model(), name='l2model')

    wk.connect(inputspec, ('copes', get_len), model, 'num_copes')

    mergecopes = pe.Node(fsl.Merge(dimension='t'), name='merge_copes')
    mergevarcopes = pe.Node(fsl.Merge(dimension='t'), name='merge_varcopes')

    rand = pe.Node(fsl.Randomise(base_name='OneSampleT',
                                 raw_stats_imgs=True,
                                 tfce=True),
                   name='randomize')

    wk.connect(inputspec, 'copes', mergecopes, 'in_files')
    wk.connect(inputspec, 'varcopes', mergevarcopes, 'in_files')
    wk.connect(model, 'design_mat', rand, 'design_mat')
    wk.connect(model, 'design_con', rand, 'tcon')
    wk.connect(mergecopes, 'merged_file', rand, 'in_file')
    #wk.connect(model,'design_grp',rand,'cov_split_file')

    bet = pe.Node(fsl.BET(mask=True, frac=0.3), name="template_brainmask")
    wk.connect(inputspec, 'template', bet, 'in_file')
    wk.connect(bet, 'mask_file', rand, 'mask')

    outputspec = pe.Node(niu.IdentityInterface(fields=[
        'f_corrected_p_files', 'f_p_files', 'fstat_files',
        't_corrected_p_files', 't_p_files', 'tstat_file', 'mask'
    ]),
                         name='outputspec')

    wk.connect(rand, 'f_corrected_p_files', outputspec, 'f_corrected_p_files')
    wk.connect(rand, 'f_p_files', outputspec, 'f_p_files')
    wk.connect(rand, 'fstat_files', outputspec, 'fstat_files')
    wk.connect(rand, 't_corrected_p_files', outputspec, 't_corrected_p_files')
    wk.connect(rand, 't_p_files', outputspec, 't_p_files')
    wk.connect(rand, 'tstat_files', outputspec, 'tstat_file')
    wk.connect(bet, 'mask_file', outputspec, 'mask')

    return wk
Ejemplo n.º 5
0
def segstats_workflow(c, name='segstats'):
    import nipype.interfaces.fsl as fsl
    import nipype.interfaces.io as nio
    import nipype.pipeline.engine as pe
    workflow = segstats(name='segstats')
    plot = workflow.get_node('roiplotter')
    workflow.remove_nodes([plot])
    inputspec = workflow.get_node('inputspec')
    # merge files grabbed

    merge = pe.Node(fsl.Merge(), name='merge_files')
    datagrabber = c.datagrabber.create_dataflow()

    workflow.connect(datagrabber, 'datagrabber.in_files', merge, 'in_files')
    workflow.connect(merge, 'merged_file', inputspec, 'tsnr_file')
    workflow.connect(datagrabber, 'datagrabber.reg_file', inputspec,
                     'reg_file')
    workflow.inputs.inputspec.sd = c.surf_dir
    workflow.connect(datagrabber, 'subject_id_iterable', inputspec, 'subject')

    sinker = pe.Node(nio.DataSink(), name='sinker')
    sinker.inputs.base_directory = c.sink_dir
    workflow.connect(datagrabber, 'subject_id_iterable', sinker, 'container')

    def get_subs(subject_id):
        subs = [('_subject_id_%s' % subject_id, '')]
        return subs

    workflow.connect(datagrabber, ('subject_id_iterable', get_subs), sinker,
                     'substitutions')
    outputspec = workflow.get_node('outputspec')
    workflow.connect(outputspec, 'roi_file', sinker, 'segstat.@roi')

    return workflow
Ejemplo n.º 6
0
def epi_sbref_registration(name='EPI_SBrefRegistration'):
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['epi_brain', 'sbref_brain']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['epi_registered', 'out_mat']),
        name='outputnode')

    mean = pe.Node(fsl.MeanImage(dimension='T'), name='EPImean')
    inu = pe.Node(ants.N4BiasFieldCorrection(dimension=3), name='EPImeanBias')
    epi_sbref = pe.Node(fsl.FLIRT(dof=6, out_matrix_file='init.mat'),
                        name='EPI2SBRefRegistration')

    epi_split = pe.Node(fsl.Split(dimension='t'), name='EPIsplit')
    epi_xfm = pe.MapNode(fsl.ApplyXfm(),
                         name='EPIapplyxfm',
                         iterfield=['in_file'])
    epi_merge = pe.Node(fsl.Merge(dimension='t'), name='EPImergeback')
    workflow.connect([
        (inputnode, epi_split, [('epi_brain', 'in_file')]),
        (inputnode, epi_sbref, [('sbref_brain', 'reference')]),
        (inputnode, epi_xfm, [('sbref_brain', 'reference')]),
        (inputnode, mean, [('epi_brain', 'in_file')]),
        (mean, inu, [('out_file', 'input_image')]),
        (inu, epi_sbref, [('output_image', 'in_file')]),
        (epi_split, epi_xfm, [('out_files', 'in_file')]),
        (epi_sbref, epi_xfm, [('out_matrix_file', 'in_matrix_file')]),
        (epi_xfm, epi_merge, [('out_file', 'in_files')]),
        (epi_sbref, outputnode, [('out_matrix_file', 'out_mat')]),
        (epi_merge, outputnode, [('merged_file', 'epi_registered')])
    ])
    return workflow
Ejemplo n.º 7
0
def create_eddy_correct_pipeline(name='eddy_correct'):
    """

    .. deprecated:: 0.9.3
      Use :func:`nipype.workflows.dmri.preprocess.epi.ecc_pipeline` instead.


    Creates a pipeline that replaces eddy_correct script in FSL. It takes a
    series of diffusion weighted images and linearly co-registers them to one
    reference image. No rotation of the B-matrix is performed, so this pipeline
    should be executed after the motion correction pipeline.

    Example
    -------

    >>> nipype_eddycorrect = create_eddy_correct_pipeline('nipype_eddycorrect')
    >>> nipype_eddycorrect.inputs.inputnode.in_file = 'diffusion.nii'
    >>> nipype_eddycorrect.inputs.inputnode.ref_num = 0
    >>> nipype_eddycorrect.run() # doctest: +SKIP

    Inputs::

        inputnode.in_file
        inputnode.ref_num

    Outputs::

        outputnode.eddy_corrected
    """

    warnings.warn(
        ('This workflow is deprecated from v.1.0.0, use '
         'nipype.workflows.dmri.preprocess.epi.ecc_pipeline instead'),
        DeprecationWarning)

    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'ref_num']),
                        name='inputnode')

    pipeline = pe.Workflow(name=name)

    split = pe.Node(fsl.Split(dimension='t'), name='split')
    pick_ref = pe.Node(niu.Select(), name='pick_ref')
    coregistration = pe.MapNode(fsl.FLIRT(no_search=True,
                                          padding_size=1,
                                          interp='trilinear'),
                                name='coregistration',
                                iterfield=['in_file'])
    merge = pe.Node(fsl.Merge(dimension='t'), name='merge')
    outputnode = pe.Node(niu.IdentityInterface(fields=['eddy_corrected']),
                         name='outputnode')

    pipeline.connect([(inputnode, split, [('in_file', 'in_file')]),
                      (split, pick_ref, [('out_files', 'inlist')]),
                      (inputnode, pick_ref, [('ref_num', 'index')]),
                      (split, coregistration, [('out_files', 'in_file')]),
                      (pick_ref, coregistration, [('out', 'reference')]),
                      (coregistration, merge, [('out_file', 'in_files')]),
                      (merge, outputnode, [('merged_file', 'eddy_corrected')])
                      ])
    return pipeline
Ejemplo n.º 8
0
    def _run_interface(self, runtime):
        in_files = self.inputs.in_files
        if not isinstance(in_files, list):
            in_files = [self.inputs.in_files]

        # Generate output average name early
        self._results['out_avg'] = fname_presuffix(self.inputs.in_files[0],
                                                   suffix='_avg',
                                                   newpath=runtime.cwd)

        if self.inputs.to_ras:
            in_files = [reorient(inf, newpath=runtime.cwd) for inf in in_files]

        if len(in_files) == 1:
            filenii = nb.load(in_files[0])
            filedata = filenii.get_data()

            # magnitude files can have an extra dimension empty
            if filedata.ndim == 5:
                sqdata = np.squeeze(filedata)
                if sqdata.ndim == 5:
                    raise RuntimeError('Input image (%s) is 5D' % in_files[0])
                else:
                    in_files = [
                        fname_presuffix(in_files[0],
                                        suffix='_squeezed',
                                        newpath=runtime.cwd)
                    ]
                    nb.Nifti1Image(sqdata, filenii.affine,
                                   filenii.header).to_filename(in_files[0])

            if np.squeeze(nb.load(in_files[0]).get_data()).ndim < 4:
                self._results['out_file'] = in_files[0]
                self._results['out_avg'] = in_files[0]
                # TODO: generate identity out_mats and zero-filled out_movpar
                return runtime
            in_files = in_files[0]
        else:
            magmrg = fsl.Merge(dimension='t', in_files=self.inputs.in_files)
            in_files = magmrg.run().outputs.merged_file
        mcflirt = fsl.MCFLIRT(cost='normcorr',
                              save_mats=True,
                              save_plots=True,
                              ref_vol=0,
                              in_file=in_files)
        mcres = mcflirt.run()
        self._results['out_mats'] = mcres.outputs.mat_file
        self._results['out_movpar'] = mcres.outputs.par_file
        self._results['out_file'] = mcres.outputs.out_file

        hmcnii = nb.load(mcres.outputs.out_file)
        hmcdat = hmcnii.get_data().mean(axis=3)
        if self.inputs.zero_based_avg:
            hmcdat -= hmcdat.min()

        nb.Nifti1Image(hmcdat, hmcnii.affine,
                       hmcnii.header).to_filename(self._results['out_avg'])

        return runtime
Ejemplo n.º 9
0
def create_non_uniformity_correct_4D_file(auto_clip=False, clip_low=7,
                                          clip_high=200, n_procs=12):
    """non_uniformity_correct_4D_file corrects functional files for nonuniformity on a timepoint by timepoint way.
    Internally it implements a workflow to split the in_file, correct each separately and then merge them back together.
    This is an ugly workaround as we have to find the output of the workflow's datasink somewhere, but it should work.

    Parameters
    ----------
    in_file : str
        Absolute path to nifti-file.
    auto_clip : bool (default: False)
        whether to let 3dUniformize decide on clipping boundaries
    clip_low : float (default: 7),
        lower clipping bound for 3dUniformize
    clip_high : float (default: 200),
        higher clipping bound for 3dUniformize
    n_procs : int (default: 12),
        the number of processes to run the internal workflow with

    Returns
    -------
    out_file : non-uniformity corrected file
        List of absolute paths to nifti-files.    """

    # nodes
    input_node = pe.Node(IdentityInterface(
        fields=['in_file',
                'auto_clip',
                'clip_low',
                'clip_high',
                'output_directory',
                'sub_id']), name='inputspec')
    split = pe.Node(Function(input_names='in_file', output_names=['out_files'],
                             function=split_4D_to_3D), name='split')

    uniformer = pe.MapNode(
        Uniformize(clip_high=clip_high, clip_low=clip_low, auto_clip=auto_clip,
                   outputtype='NIFTI_GZ'), name='uniformer',
        iterfield=['in_file'])
    merge = pe.MapNode(fsl.Merge(dimension='t'), name='merge',
                       iterfield=['in_files'])

    datasink = pe.Node(nio.DataSink(infields=['topup'], container=''),
                       name='sinker')
    datasink.inputs.parameterization = False

    # workflow
    nuc_wf = pe.Workflow(name='nuc')
    nuc_wf.connect(input_node, 'sub_id', datasink, 'container')
    nuc_wf.connect(input_node, 'output_directory', datasink, 'base_directory')
    nuc_wf.connect(input_node, 'in_file', split, 'in_file')
    nuc_wf.connect(split, 'out_files', uniformer, 'in_file')
    nuc_wf.connect(uniformer, 'out_file', merge, 'in_files')
    nuc_wf.connect(merge, 'merged_file', datasink, 'uni')

    # nuc_wf.run('MultiProc', plugin_args={'n_procs': n_procs})
    # out_file = glob.glob(os.path.join(td, 'uni', fn_base + '_0000*.nii.gz'))[0]

    return nuc_wf
Ejemplo n.º 10
0
def fsl_RegrSliceWise(input_file,txtregr_Path,regr_Path):
    # scale Nifti data by factor 10
    dataName = os.path.basename(input_file).split('.')[0]

    # proof  data existence
    regrTextFiles = findRegData(txtregr_Path)
    if len(regrTextFiles) == 0:
        print('No regression with physio data!')
        output_file = os.path.join(regr_Path,
                                   os.path.basename(input_file).split('.')[0]) + '_RGR.nii.gz'
        shutil.copyfile(input_file, output_file)
        return output_file


    fslPath = scaleBy10(input_file, inv=False)
    # split input_file in slices
    mySplit = fsl.Split(in_file=fslPath, dimension='z', out_base_name=dataName)
    print(mySplit.cmdline)
    mySplit.run()
    os.remove(fslPath)

    # sparate ref and src volume in slices
    sliceFiles = findSlicesData(os.getcwd(), dataName)




    if not len(regrTextFiles) == len(sliceFiles):
        sys.exit('Error: Not enough txt.Files in %s' % txtregr_Path)

    print('Start separate slice Regression ... ')

    # start to regression slice by slice
    print('For all Sices ...')
    for i in range(len(sliceFiles)):
        slc = sliceFiles[i]
        regr = regrTextFiles[i]
        # only take the columns [1,2,7,9,11,12,13] of the reg-.txt Files
        output_file = os.path.join(regr_Path, os.path.basename(slc))
        myRegr = fsl.FilterRegressor(in_file=slc,design_file=regr,out_file=output_file,filter_columns=[1,2,7,9,11,12,13])
        print(myRegr.cmdline)
        myRegr.run()
        os.remove(slc)


    # merge slices to a single volume
    mcf_sliceFiles = findSlicesData(regr_Path, dataName)
    output_file = os.path.join(regr_Path,
                               os.path.basename(input_file).split('.')[0]) + '_RGR.nii.gz'
    myMerge = fsl.Merge(in_files=mcf_sliceFiles, dimension='z', merged_file=output_file)
    print(myMerge.cmdline)
    myMerge.run()

    for slc in mcf_sliceFiles: os.remove(slc)

    # unscale result data by factor 10ˆ(-1)
    output_file = scaleBy10(output_file, inv=True)

    return output_file
Ejemplo n.º 11
0
def copes1_2_anat_func(fixed, cope1_10Hz_r1, cope1_10Hz_r2, cope1_10Hz_r3,
                       func_2_anat_trans_10Hz_r1, func_2_anat_trans_10Hz_r2,
                       func_2_anat_trans_10Hz_r3, mask_brain):
    import os
    import re
    import nipype.interfaces.ants as ants
    import nipype.interfaces.fsl as fsl

    cwd = os.getcwd()

    copes1 = [cope1_10Hz_r1, cope1_10Hz_r2, cope1_10Hz_r3]
    trans = [
        func_2_anat_trans_10Hz_r1, func_2_anat_trans_10Hz_r2,
        func_2_anat_trans_10Hz_r3
    ]

    copes1_2_anat = []
    FEtdof_t1_2_anat = []
    for i in range(len(copes1)):
        moving = copes1[i]
        transform = trans[i]
        ants_apply = ants.ApplyTransforms()
        ants_apply.inputs.dimension = 3
        ants_apply.inputs.input_image = moving
        ants_apply.inputs.reference_image = fixed
        ants_apply.inputs.transforms = transform
        ants_apply.inputs.output_image = 'cope1_2_anat_10Hz_r{0}.nii.gz'.format(
            i + 1)

        ants_apply.run()

        copes1_2_anat.append(
            os.path.abspath('cope1_2_anat_10Hz_r{0}.nii.gz'.format(i + 1)))

        dof = fsl.ImageMaths()
        dof.inputs.in_file = 'cope1_2_anat_10Hz_r{0}.nii.gz'.format(i + 1)
        dof.inputs.op_string = '-mul 0 -add 147 -mas'
        dof.inputs.in_file2 = mask_brain
        dof.inputs.out_file = 'FEtdof_t1_2_anat_10Hz_r{0}.nii.gz'.format(i + 1)

        dof.run()

        FEtdof_t1_2_anat.append(
            os.path.abspath('FEtdof_t1_2_anat_10Hz_r{0}.nii.gz'.format(i + 1)))

    merge = fsl.Merge()
    merge.inputs.dimension = 't'
    merge.inputs.in_files = copes1_2_anat
    merge.inputs.merged_file = 'copes1_2_anat_10Hz.nii.gz'
    merge.run()

    merge.inputs.in_files = FEtdof_t1_2_anat
    merge.inputs.merged_file = 'dofs_t1_2_anat_10Hz.nii.gz'
    merge.run()

    copes1_2_anat = os.path.abspath('copes1_2_anat_10Hz.nii.gz')
    dofs_t1_2_anat = os.path.abspath('dofs_t1_2_anat_10Hz.nii.gz')

    return copes1_2_anat, dofs_t1_2_anat
Ejemplo n.º 12
0
def apply_all_corrections(name='UnwarpArtifacts'):
    """
    Combines two lists of linear transforms with the deformation field
    map obtained typically after the SDC process.
    Additionally, computes the corresponding bspline coefficients and
    the map of determinants of the jacobian.
    """

    inputnode = pe.Node(niu.IdentityInterface(fields=['in_sdc',
                        'in_hmc', 'in_ecc', 'in_dwi']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_warp',
                         'out_coeff', 'out_jacobian']), name='outputnode')
    warps = pe.MapNode(fsl.ConvertWarp(relwarp=True),
                       iterfield=['premat', 'postmat'],
                       name='ConvertWarp')

    selref = pe.Node(niu.Select(index=[0]), name='Reference')

    split = pe.Node(fsl.Split(dimension='t'), name='SplitDWIs')
    unwarp = pe.MapNode(fsl.ApplyWarp(), iterfield=['in_file', 'field_file'],
                        name='UnwarpDWIs')

    coeffs = pe.MapNode(fsl.WarpUtils(out_format='spline'),
                        iterfield=['in_file'], name='CoeffComp')
    jacobian = pe.MapNode(fsl.WarpUtils(write_jacobian=True),
                          iterfield=['in_file'], name='JacobianComp')
    jacmult = pe.MapNode(fsl.MultiImageMaths(op_string='-mul %s'),
                         iterfield=['in_file', 'operand_files'],
                         name='ModulateDWIs')

    thres = pe.MapNode(fsl.Threshold(thresh=0.0), iterfield=['in_file'],
                       name='RemoveNegative')
    merge = pe.Node(fsl.Merge(dimension='t'), name='MergeDWIs')

    wf = pe.Workflow(name=name)
    wf.connect([
        (inputnode,   warps,      [('in_sdc', 'warp1'),
                                   ('in_hmc', 'premat'),
                                   ('in_ecc', 'postmat'),
                                   ('in_dwi', 'reference')]),
        (inputnode,   split,      [('in_dwi', 'in_file')]),
        (split,       selref,     [('out_files', 'inlist')]),
        (warps,       unwarp,     [('out_file', 'field_file')]),
        (split,       unwarp,     [('out_files', 'in_file')]),
        (selref,      unwarp,     [('out', 'ref_file')]),
        (selref,      coeffs,     [('out', 'reference')]),
        (warps,       coeffs,     [('out_file', 'in_file')]),
        (selref,      jacobian,   [('out', 'reference')]),
        (coeffs,      jacobian,   [('out_file', 'in_file')]),
        (unwarp,      jacmult,    [('out_file', 'in_file')]),
        (jacobian,    jacmult,    [('out_jacobian', 'operand_files')]),
        (jacmult,     thres,      [('out_file', 'in_file')]),
        (thres,       merge,      [('out_file', 'in_files')]),
        (warps,       outputnode, [('out_file', 'out_warp')]),
        (coeffs,      outputnode, [('out_file', 'out_coeff')]),
        (jacobian,    outputnode, [('out_jacobian', 'out_jacobian')]),
        (merge,       outputnode, [('merged_file', 'out_file')])
    ])
    return wf
def create_2lvl_rand(name="group_randomize", mask=None, iters=5000):
    import nipype.interfaces.fsl as fsl
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as niu

    wk = pe.Workflow(name=name)

    inputspec = pe.Node(niu.IdentityInterface(fields=[
        'copes', 'varcopes', 'template', "contrasts", "group", "regressors"
    ]),
                        name='inputspec')

    model = pe.Node(fsl.MultipleRegressDesign(), name='l2model')

    wk.connect(inputspec, 'contrasts', model, "contrasts")
    wk.connect(inputspec, 'regressors', model, "regressors")
    wk.connect(inputspec, 'group', model, 'groups')

    mergecopes = pe.Node(fsl.Merge(dimension='t'), name='merge_copes')

    rand = pe.Node(fsl.Randomise(base_name='TwoSampleT',
                                 raw_stats_imgs=True,
                                 tfce=True,
                                 num_perm=iters),
                   name='randomize')

    wk.connect(inputspec, 'copes', mergecopes, 'in_files')
    wk.connect(model, 'design_mat', rand, 'design_mat')
    wk.connect(model, 'design_con', rand, 'tcon')
    wk.connect(mergecopes, 'merged_file', rand, 'in_file')
    wk.connect(model, 'design_grp', rand, 'x_block_labels')

    if mask == None:
        bet = pe.Node(fsl.BET(mask=True, frac=0.3), name="template_brainmask")
        wk.connect(inputspec, 'template', bet, 'in_file')
        wk.connect(bet, 'mask_file', rand, 'mask')

    else:
        wk.connect(inputspec, 'template', rand, 'mask')

    outputspec = pe.Node(niu.IdentityInterface(fields=[
        'f_corrected_p_files', 'f_p_files', 'fstat_files',
        't_corrected_p_files', 't_p_files', 'tstat_file', 'mask'
    ]),
                         name='outputspec')

    wk.connect(rand, 'f_corrected_p_files', outputspec, 'f_corrected_p_files')
    wk.connect(rand, 'f_p_files', outputspec, 'f_p_files')
    wk.connect(rand, 'fstat_files', outputspec, 'fstat_files')
    wk.connect(rand, 't_corrected_p_files', outputspec, 't_corrected_p_files')
    wk.connect(rand, 't_p_files', outputspec, 't_p_files')
    wk.connect(rand, 'tstat_files', outputspec, 'tstat_file')
    if mask == None:
        wk.connect(bet, 'mask_file', outputspec, 'mask')
    else:
        wk.connect(inputspec, 'template', outputspec, 'mask')
    return wk
Ejemplo n.º 14
0
def create_nonbrain_meansignal(name='nonbrain_meansignal'):

    nonbrain_meansignal = Workflow(name=name)

    inputspec = Node(utility.IdentityInterface(fields=['func_file']),
                     name='inputspec')

    # Split raw 4D functional image into 3D niftis
    split_image = Node(fsl.Split(dimension='t', output_type='NIFTI'),
                       name='split_image')

    # Create a brain mask for each of the 3D images
    brain_mask = MapNode(fsl.BET(frac=0.3,
                                 mask=True,
                                 no_output=True,
                                 robust=True),
                         iterfield=['in_file'],
                         name='brain_mask')

    # Merge the 3D masks into a 4D nifti (producing a separate mask per volume)
    merge_mask = Node(fsl.Merge(dimension='t'), name='merge_mask')

    # Reverse the 4D brain mask, to produce a 4D non brain mask
    reverse_mask = Node(fsl.ImageMaths(op_string='-sub 1 -mul -1'),
                        name='reverse_mask')

    # Apply the mask on the raw functional data
    apply_mask = Node(fsl.ImageMaths(), name='apply_mask')

    # Highpass filter the non brain image
    highpass = create_highpass_filter(name='highpass')

    # Extract the mean signal from the non brain image
    mean_signal = Node(fsl.ImageMeants(), name='mean_signal')

    outputspec = Node(utility.IdentityInterface(fields=['nonbrain_regressor']),
                      name='outputspec')

    nonbrain_meansignal.connect(inputspec, 'func_file', split_image, 'in_file')
    nonbrain_meansignal.connect(split_image, 'out_files', brain_mask,
                                'in_file')
    nonbrain_meansignal.connect(brain_mask, 'mask_file', merge_mask,
                                'in_files')
    nonbrain_meansignal.connect(merge_mask, 'merged_file', reverse_mask,
                                'in_file')
    nonbrain_meansignal.connect(reverse_mask, 'out_file', apply_mask,
                                'mask_file')
    nonbrain_meansignal.connect(inputspec, 'func_file', apply_mask, 'in_file')
    nonbrain_meansignal.connect(apply_mask, 'out_file', highpass,
                                'inputspec.in_file')
    nonbrain_meansignal.connect(highpass, 'outputspec.filtered_file',
                                mean_signal, 'in_file')
    nonbrain_meansignal.connect(mean_signal, 'out_file', outputspec,
                                'nonbrain_regressor')

    return nonbrain_meansignal
Ejemplo n.º 15
0
def dwi_flirt(name='DWICoregistration', excl_nodiff=False,
              flirt_param={}):
    """
    Generates a workflow for linear registration of dwi volumes
    """
    inputnode = pe.Node(niu.IdentityInterface(fields=['reference',
                        'in_file', 'ref_mask', 'in_xfms', 'in_bval']),
                        name='inputnode')

    initmat = pe.Node(niu.Function(input_names=['in_bval', 'in_xfms',
                      'excl_nodiff'], output_names=['init_xfms'],
                                   function=_checkinitxfm), name='InitXforms')
    initmat.inputs.excl_nodiff = excl_nodiff
    dilate = pe.Node(fsl.maths.MathsCommand(nan2zeros=True,
                     args='-kernel sphere 5 -dilM'), name='MskDilate')
    split = pe.Node(fsl.Split(dimension='t'), name='SplitDWIs')
    pick_ref = pe.Node(niu.Select(), name='Pick_b0')
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3), name='Bias')
    enhb0 = pe.Node(niu.Function(input_names=['in_file', 'in_mask',
                    'clip_limit'], output_names=['out_file'],
                                 function=enhance), name='B0Equalize')
    enhb0.inputs.clip_limit = 0.015
    enhdw = pe.MapNode(niu.Function(input_names=['in_file', 'in_mask'],
                       output_names=['out_file'], function=enhance),
                       name='DWEqualize', iterfield=['in_file'])
    flirt = pe.MapNode(fsl.FLIRT(**flirt_param), name='CoRegistration',
                       iterfield=['in_file', 'in_matrix_file'])
    thres = pe.MapNode(fsl.Threshold(thresh=0.0), iterfield=['in_file'],
                       name='RemoveNegative')
    merge = pe.Node(fsl.Merge(dimension='t'), name='MergeDWIs')
    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file',
                         'out_xfms']), name='outputnode')
    wf = pe.Workflow(name=name)
    wf.connect([
        (inputnode,  split,      [('in_file', 'in_file')]),
        (inputnode,  dilate,     [('ref_mask', 'in_file')]),
        (inputnode,  enhb0,      [('ref_mask', 'in_mask')]),
        (inputnode,  initmat,    [('in_xfms', 'in_xfms'),
                                  ('in_bval', 'in_bval')]),
        (inputnode,  n4,         [('reference', 'input_image'),
                                  ('ref_mask', 'mask_image')]),
        (dilate,     flirt,      [('out_file', 'ref_weight'),
                                  ('out_file', 'in_weight')]),
        (n4,         enhb0,      [('output_image', 'in_file')]),
        (split,      enhdw,      [('out_files', 'in_file')]),
        (dilate,     enhdw,      [('out_file', 'in_mask')]),
        (enhb0,      flirt,      [('out_file', 'reference')]),
        (enhdw,      flirt,      [('out_file', 'in_file')]),
        (initmat,    flirt,      [('init_xfms', 'in_matrix_file')]),
        (flirt,      thres,      [('out_file', 'in_file')]),
        (thres,      merge,      [('out_file', 'in_files')]),
        (merge,      outputnode, [('merged_file', 'out_file')]),
        (flirt,      outputnode, [('out_matrix_file', 'out_xfms')])
    ])
    return wf
Ejemplo n.º 16
0
def create_realign_flow(name='realign'):
    """Realign a time series to the middle volume using spline interpolation

    Uses MCFLIRT to realign the time series and ApplyWarp to apply the rigid
    body transformations using spline interpolation (unknown order).

    Example
    -------

    >>> wf = create_realign_flow()
    >>> wf.inputs.inputspec.func = 'f3.nii'
    >>> wf.run() # doctest: +SKIP

    """
    realignflow = pe.Workflow(name=name)
    inputnode = pe.Node(interface=util.IdentityInterface(fields=[
        'func',
    ]),
                        name='inputspec')
    outputnode = pe.Node(interface=util.IdentityInterface(
        fields=['realigned_file', 'rms_files', 'par_file']),
                         name='outputspec')
    start_dropper = pe.Node(util.Function(
        input_names=['in_vol_fn', 'n_frames'],
        output_names=['out_fn'],
        function=remove_first_n_frames),
                            name='start_dropper')
    start_dropper.inputs.n_frames = 5

    realigner = pe.Node(fsl.MCFLIRT(save_mats=True,
                                    stats_imgs=True,
                                    save_rms=True,
                                    save_plots=True),
                        name='realigner')

    splitter = pe.Node(fsl.Split(dimension='t'), name='splitter')
    warper = pe.MapNode(fsl.ApplyWarp(interp='spline'),
                        iterfield=['in_file', 'premat'],
                        name='warper')
    joiner = pe.Node(fsl.Merge(dimension='t'), name='joiner')

    realignflow.connect(inputnode, 'func', start_dropper, 'in_vol_fn')
    realignflow.connect(start_dropper, 'out_fn', realigner, 'in_file')
    realignflow.connect(start_dropper, ('out_fn', select_volume, 'middle'),
                        realigner, 'ref_vol')
    realignflow.connect(realigner, 'out_file', splitter, 'in_file')
    realignflow.connect(realigner, 'mat_file', warper, 'premat')
    realignflow.connect(realigner, 'variance_img', warper, 'ref_file')
    realignflow.connect(splitter, 'out_files', warper, 'in_file')
    realignflow.connect(warper, 'out_file', joiner, 'in_files')
    realignflow.connect(joiner, 'merged_file', outputnode, 'realigned_file')
    realignflow.connect(realigner, 'rms_files', outputnode, 'rms_files')
    realignflow.connect(realigner, 'par_file', outputnode, 'par_file')
    return realignflow
Ejemplo n.º 17
0
def create_eddy_correct_pipeline(name="eddy_correct"):
    """Creates a pipeline that replaces eddy_correct script in FSL. It takes a
    series of diffusion weighted images and linearly corregisters them to one
    reference image.

    Example
    -------

    >>> nipype_eddycorrect = create_eddy_correct_pipeline("nipype_eddycorrect")
    >>> nipype_eddycorrect.inputs.inputnode.in_file = 'diffusion.nii'
    >>> nipype_eddycorrect.inputs.inputnode.ref_num = 0
    >>> nipype_eddycorrect.run() # doctest: +SKIP

    Inputs::

        inputnode.in_file
        inputnode.ref_num

    Outputs::

        outputnode.eddy_corrected
    """

    inputnode = pe.Node(
        interface=util.IdentityInterface(fields=["in_file", "ref_num"]),
        name="inputnode")

    pipeline = pe.Workflow(name=name)

    split = pe.Node(fsl.Split(dimension='t'), name="split")
    pipeline.connect([(inputnode, split, [("in_file", "in_file")])])

    pick_ref = pe.Node(util.Select(), name="pick_ref")
    pipeline.connect([(split, pick_ref, [("out_files", "inlist")]),
                      (inputnode, pick_ref, [("ref_num", "index")])])

    coregistration = pe.MapNode(fsl.FLIRT(no_search=True, padding_size=1),
                                name="coregistration",
                                iterfield=["in_file"])
    pipeline.connect([(split, coregistration, [("out_files", "in_file")]),
                      (pick_ref, coregistration, [("out", "reference")])])

    merge = pe.Node(fsl.Merge(dimension="t"), name="merge")
    pipeline.connect([(coregistration, merge, [("out_file", "in_files")])])

    outputnode = pe.Node(
        interface=util.IdentityInterface(fields=["eddy_corrected"]),
        name="outputnode")

    pipeline.connect([(merge, outputnode, [("merged_file", "eddy_corrected")])
                      ])

    return pipeline
Ejemplo n.º 18
0
def generate_common_mask(inputs):
	mask_list = []
	for subj in inputs:
		mask = os.path.join(OUTPUT, 'stage1', 'mask_idc_' + subj + '.nii.gz')
		mask_list.append(mask)
	allFile = os.path.join(OUTPUT, 'stage1', 'maskALL.nii.gz')	
	cmd_out = os.path.join(OUTPUT, 'stage1', 'stage1_maskall_idc_' + subj + '.out')
	fslmerge = fsl.Merge(dimension='t', terminal_output='stream',in_files=mask_list, merged_file=allFile, output_type='NIFTI_GZ')
	write_cmd_out(fslmerge.cmdline, cmd_out)
	fslmerge.run()
	oFile = os.path.join(OUTPUT, 'stage1', 'mask.nii.gz')
	fslmaths = fsl.ImageMaths(in_file=allFile, op_string='-Tmin', out_file=oFile)
	fslmaths.run()
Ejemplo n.º 19
0
    def warp_CBF_map( self, CBF_dir, CBF_list ):
        """Apply warp to the CBF map and smooth."""
        try:
        #
        #
            #
            # create the pool of threads
            for i in range( self.procs_ ):
                t = threading.Thread( target = self.CBF_modulation_, args=[CBF_dir] )
                t.daemon = True
                t.start()
            # Stack the items
            for item in CBF_list:
                self.queue_CBF_.put(item)
            # block until all tasks are done
            self.queue_CBF_.join()

            #
            # 4D image with modulated CBF
            CBF_modulated_template_4D = os.path.join(self.ana_dir_, "CBF_modulated_template_4D.nii.gz")
            #
            merger = fsl.Merge()
            merger.inputs.in_files     =  self.CBF_modulated_template_
            merger.inputs.dimension    = 't'
            merger.inputs.output_type  = 'NIFTI_GZ'
            merger.inputs.merged_file  =  CBF_modulated_template_4D
            merger.run()

            #
            # Smooth the 4D image
            for sigma in [2, 3, 4]:
                CBF_mod_smooth_4D = os.path.join(self.ana_dir_, "CBF_modulated_template_4D_%s_sigma.nii.gz"%sigma)
                #
                maths = fsl.ImageMaths()
                maths.inputs.in_file       =   CBF_modulated_template_4D
                maths.inputs.op_string     = "-fmean -kernel gauss %s"%sigma
                maths.inputs.out_file      =   CBF_mod_smooth_4D
                maths.run()
        #
        #
        except Exception as inst:
            print inst
            _log.error(inst)
            quit(-1)
        except IOError as e:
            print "I/O error({0}): {1}".format(e.errno, e.strerror)
            quit(-1)
        except:
            print "Unexpected error:", sys.exc_info()[0]
            quit(-1)
Ejemplo n.º 20
0
def merge_phases(in_file: Path, phasediff: Path, merged: Path):
    """
    Combine two images into one 4D file
    Arguments:
        in_file {Path} -- [path to 4D, AP oriented file]
        phasediff {Path} -- [path to phase-different, PA oriented file]
    """
    AP_b0 = index_img(str(in_file), 0)
    AP_file = merged.parent / f"AP_b0{FSLOUTTYPE}"
    nib.save(AP_b0, str(AP_file))
    merger = fsl.Merge()
    merger.inputs.in_files = [AP_file, phasediff]
    merger.inputs.dimension = "t"
    merger.inputs.merged_file = merged
    return merger
Ejemplo n.º 21
0
def fsl_SeparateSliceMoCo(input_file, par_folder):
    # scale Nifti data by factor 10
    dataName = os.path.basename(input_file).split('.')[0]
    fslPath = scaleBy10(input_file, inv=False)
    mySplit = fsl.Split(in_file=fslPath, dimension='z', out_base_name=dataName)
    print(mySplit.cmdline)
    mySplit.run()
    os.remove(fslPath)

    # sparate ref and src volume in slices
    sliceFiles = findSlicesData(os.getcwd(), dataName)
    # refFiles = findSlicesData(os.getcwd(),'ref')
    print('For all slices ... ')

    # start to correct motions slice by slice
    for i in range(len(sliceFiles)):
        slc = sliceFiles[i]
        # ref = refFiles[i]
        # take epi as ref
        output_file = os.path.join(par_folder, os.path.basename(slc))
        myMCFLIRT = fsl.preprocess.MCFLIRT(in_file=slc,
                                           out_file=output_file,
                                           save_plots=True,
                                           terminal_output='none')
        print(myMCFLIRT.cmdline)
        myMCFLIRT.run()
        os.remove(slc)
        # os.remove(ref)

    # merge slices to a single volume

    mcf_sliceFiles = findSlicesData(par_folder, dataName)
    output_file = os.path.join(
        os.path.dirname(input_file),
        os.path.basename(input_file).split('.')[0]) + '_mcf.nii.gz'
    myMerge = fsl.Merge(in_files=mcf_sliceFiles,
                        dimension='z',
                        merged_file=output_file)
    print(myMerge.cmdline)
    myMerge.run()

    for slc in mcf_sliceFiles:
        os.remove(slc)

    # unscale result data by factor 10ˆ(-1)
    output_file = scaleBy10(output_file, inv=True)

    return output_file
Ejemplo n.º 22
0
    def generate_mask(self, **kwargs):
        self.mask_list = []
        parallel = False
        ncores = 2
        for i in kwargs.keys():
            if i == 'parallel':
                if kwargs[i]:
                    parallel = True
            elif i == 'ncores':
                try:
                    ncores = int(kwargs[i])
                except:
                    print 'number of cores not specified properly..', ncores

        def dual_reg_mask(subj):
            iFile = os.path.join(os.path.dirname(self.indir), subj,
                                 'idc_' + subj + self.featdir_sfix,
                                 self.ff_data_name)
            oFile = os.path.join(self.outdir, 'stage1',
                                 'mask_idc_' + subj + '.nii.gz')
            self.mask_list.append(oFile)
            fslmaths = fsl.ImageMaths(in_file=iFile,
                                      op_string='-Tstd -bin',
                                      out_file=oFile,
                                      output_type='NIFTI_GZ',
                                      out_data_type='char')
            fslmaths.run()

        if not parallel:
            for subj in self.subjects:
                dual_reg_mask(subj)
        #else:
        #   pool = Pool(processes=ncores)
        #   pool.map(dual_reg_mask, self.subjects)
        #once the masks are all made, then make the average:
        allFile = os.path.join(self.outdir, 'stage1', 'maskALL.nii.gz')
        fslmerge = fsl.Merge(dimension='t',
                             terminal_output='stream',
                             in_files=self.mask_list,
                             merged_file=allFile,
                             output_type='NIFTI_GZ')
        fslmerge.run()
        oFile = os.path.join(self.outdir, 'stage1', 'mask.nii.gz')
        fslmaths = fsl.ImageMaths(in_file=allFile,
                                  op_string='-Tmin',
                                  out_file=oFile)
        fslmaths.run()
Ejemplo n.º 23
0
def merge_and_mean(name='mm'):
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_files']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['merged', 'mean']),
                         name='outputnode')
    merge = pe.MapNode(fsl.Merge(dimension='z'),
                       name='Merge',
                       iterfield=['in_files'])
    mean = pe.MapNode(fsl.ImageMaths(op_string='-Tmean'),
                      name='Mean',
                      iterfield=['in_file'])

    wf = pe.Workflow(name=name)
    wf.connect([(inputnode, merge, [(('in_files', transpose), 'in_files')]),
                (merge, mean, [('merged_file', 'in_file')]),
                (merge, outputnode, [('merged_file', 'merged')]),
                (mean, outputnode, [('out_file', 'mean')])])
    return wf
Ejemplo n.º 24
0
def varcopes1_2_anat_func(fixed, varcope1_10Hz_r1, varcope1_10Hz_r2,
                          varcope1_10Hz_r3, func_2_anat_trans_10Hz_r1,
                          func_2_anat_trans_10Hz_r2,
                          func_2_anat_trans_10Hz_r3):
    import os
    import re
    import nipype.interfaces.ants as ants
    import nipype.interfaces.fsl as fsl

    cwd = os.getcwd()

    varcopes1 = [varcope1_10Hz_r1, varcope1_10Hz_r2, varcope1_10Hz_r3]
    trans = [
        func_2_anat_trans_10Hz_r1, func_2_anat_trans_10Hz_r2,
        func_2_anat_trans_10Hz_r3
    ]

    varcopes1_2_anat = []

    for i in range(len(varcopes1)):
        moving = varcopes1[i]
        transform = trans[i]
        ants_apply = ants.ApplyTransforms()
        ants_apply.inputs.dimension = 3
        ants_apply.inputs.input_image = moving
        ants_apply.inputs.reference_image = fixed
        ants_apply.inputs.transforms = transform
        ants_apply.inputs.output_image = 'varcope1_2_anat_10Hz_r{0}.nii.gz'.format(
            i + 1)

        ants_apply.run()

        varcopes1_2_anat.append(
            os.path.abspath('varcope1_2_anat_10Hz_r{0}.nii.gz'.format(i + 1)))

    merge = fsl.Merge()
    merge.inputs.dimension = 't'
    merge.inputs.in_files = varcopes1_2_anat
    merge.inputs.merged_file = 'varcopes1_2_anat_10Hz.nii.gz'
    merge.run()

    varcopes1_2_anat = os.path.abspath('varcopes1_2_anat_10Hz.nii.gz')

    return varcopes1_2_anat
Ejemplo n.º 25
0
    def _run_interface(self, runtime):
        if len(self.inputs.in_files) == 1:
            self._results['out_file'] = self.inputs.in_files[0]
            self._results['out_avg'] = self.inputs.in_files[0]
            # TODO: generate identity out_mats and zero-filled out_movpar

            return runtime

        magmrg = fsl.Merge(dimension='t', in_files=self.inputs.in_files)
        mcflirt = fsl.MCFLIRT(cost='normcorr', save_mats=True, save_plots=True,
                              ref_vol=0, in_file=magmrg.run().outputs.merged_file)
        mcres = mcflirt.run()
        self._results['out_mats'] = mcres.outputs.mat_file
        self._results['out_movpar'] = mcres.outputs.par_file
        self._results['out_file'] = mcres.outputs.out_file

        mean = fsl.MeanImage(dimension='T', in_file=mcres.outputs.out_file)
        self._results['out_avg'] = mean.run().outputs.out_file
        return runtime
Ejemplo n.º 26
0
def _multiple_pe_hmc(in_files, in_movpar, in_ref=None):
    """
    This function interprets that we are dealing with a
    multiple PE (phase encoding) input if it finds several
    files in in_files.

    If we have several images with various PE directions,
    it will compute the HMC parameters between them using
    an embedded workflow.

    It just forwards the two inputs otherwise.
    """
    import os
    from nipype.interfaces import fsl
    from nipype.interfaces import ants

    if len(in_files) == 1:
        out_file = in_files[0]
        out_movpar = in_movpar
    else:
        if in_ref is None:
            in_ref = 0

        # Head motion correction
        fslmerge = fsl.Merge(dimension='t', in_files=in_files)
        hmc = fsl.MCFLIRT(ref_vol=in_ref, save_mats=True, save_plots=True)
        hmc.inputs.in_file = fslmerge.run().outputs.merged_file
        hmc_res = hmc.run()
        out_file = hmc_res.outputs.out_file
        out_movpar = hmc_res.outputs.par_file

    mean = fsl.MeanImage(
        dimension='T', in_file=out_file)
    inu = ants.N4BiasFieldCorrection(
        dimension=3, input_image=mean.run().outputs.out_file)
    inu_res = inu.run()
    out_ref = inu_res.outputs.output_image
    bet = fsl.BET(
        frac=0.6, mask=True, in_file=out_ref)
    out_mask = bet.run().outputs.mask_file

    return (out_file, out_ref, out_mask, out_movpar)
Ejemplo n.º 27
0
 def average_template_( self, Template_4D, List, Template ):
     """Merge the list in a 4D image; average the 4D imge in a 3D image; flip the image and and average the flipped and unflipped iamges."""
     try:
         #
         #
         # merge tissues in a 4D file
         merger = fsl.Merge()
         merger.inputs.in_files     =  List
         merger.inputs.dimension    = 't'
         merger.inputs.output_type  = 'NIFTI_GZ'
         merger.inputs.merged_file  =  Template_4D
         merger.run()
         # average over frames
         maths = fsl.ImageMaths( in_file   =  Template_4D, 
                                 op_string = '-Tmean', 
                                 out_file  =  Template )
         maths.run();
         # Flip the frames
         swap = fsl.SwapDimensions()
         swap.inputs.in_file   = Template
         swap.inputs.new_dims  = ("-x","y","z")
         swap.inputs.out_file  = "%s_flipped.nii.gz"%Template[:-7]
         swap.run()
         # average the frames
         maths = fsl.ImageMaths( in_file   =  Template, 
                                 op_string = '-add %s -div 2'%Template[:-7], 
                                 out_file  =  Template )
         maths.run();
     #
     #
     except Exception as inst:
         print inst
         _log.error(inst)
         quit(-1)
     except IOError as e:
         print "I/O error({0}): {1}".format(e.errno, e.strerror)
         quit(-1)
     except:
         print "Unexpected error:", sys.exc_info()[0]
         quit(-1)
Ejemplo n.º 28
0
def merge_and_mean(muscle_heatmaps, heatmap_concatenated, heatmap_group_average):

    heatmap_list = list()
    # heatmap_list is a list with two values per entry, first is the tag and
    # second is the location of a warped heatmap for the muscle for that subject
    for list_entry in muscle_heatmaps:
        heatmap_list.append(list_entry[1])
        
    merge_heatmaps = fsl.Merge()
    merge_heatmaps.inputs.in_files = heatmap_list
    merge_heatmaps.inputs.dimension = 't'
    merge_heatmaps.inputs.merged_file = heatmap_concatenated
    merge_heatmaps.inputs.output_type = 'NIFTI_GZ'
    # parent_logger.critical(merge_heatmaps.cmdline)
    merge_results = merge_heatmaps.run()
    
    mean_heatmap = fsl.MeanImage()
    mean_heatmap.inputs.in_file = heatmap_concatenated
    mean_heatmap.inputs.dimension = 'T'
    mean_heatmap.inputs.out_file = heatmap_group_average
    mean_heatmap.inputs.output_type = 'NIFTI_GZ'
    # parent_logger.critical(mean_heatmap.cmdline)
    mean_result = mean_heatmap.run()
Ejemplo n.º 29
0
def fsl_merge(in_files=traits.Undefined, dimension='t'):
    """ Merge the NifTI files in `in_files` in the given `dimension`.
    This uses `fslmerge`.

    Parameters
    ----------
    in_files: list of str.
        Paths to the files to merge.

    dimension: str
        Character indicating the merging dimension.
        Choices: 't', 'x', 'y', 'z'

    Returns
    -------
    merger: fsl.Merge
    """
    merger = fsl.Merge()
    merger.inputs.dimension = dimension
    merger.inputs.output_type = "NIFTI_GZ"
    merger.inputs.in_files = in_files

    return merger
Ejemplo n.º 30
0
 def dualreg4d(self, dr_dir, dr_pfix, ics, oDir):
     for ic in ics:
         print 'writing out 4d file for component: ', ic
         fourDlist = []
         for s in range(0, self.subj_list.shape[0]):
             subj = str(int(self.subj_list[s][0]))
             pe_file = os.path.join(
                 dr_dir, 'stage2',
                 dr_pfix + subj + '_ic' + str(ic) + '.nii.gz')
             if not os.path.exists(pe_file):
                 print 'CANNOT FIND filtered func data for :', subj
                 print 'Looked here: ', pe_file
                 print 'Cannot continue...must exit...'
                 sys.exit(0)
             fourDlist.append(pe_file)
         oFile = os.path.join(
             oDir, 'dr_stage2_merged_pe_ic' + str(ic) + '.nii.gz')
         fslmerge = fsl.Merge(dimension='t',
                              terminal_output='stream',
                              in_files=fourDlist,
                              merged_file=oFile,
                              output_type='NIFTI_GZ')
         fslmerge.run()