Ejemplo n.º 1
0

# Fractional anisotropy (FA) map
tensor2faNode = Node(mrtrix.Tensor2FractionalAnisotropy(), name = 'tensor_2_FA')

# Remove noisy background by multiplying the FA Image with the binary brainmask
mrmultNode = Node(Function(input_names = ['in1', 'in2', 'out_file'],
                           output_names = ['out_file'],
                           function = multiplyMRTrix),
                  name = 'mrmult')

# Eigenvector (EV) map
tensor2vectorNode = Node(mrtrix.Tensor2Vector(), name = 'tensor_2_vector')

# Scale the EV map by the FA Image
scaleEvNode = mrmultNode.clone('scale_ev')

# Mask of single-fibre voxels
erodeNode = Node(mrtrix.Erode(), name = 'erode_wmmask')
erodeNode.inputs.number_of_passes = number_of_passes

cleanFaNode = mrmultNode.clone('multiplyFA_Mask')

thresholdFANode = Node(mrtrix.Threshold(), name = 'threshold_FA')
thresholdFANode.inputs.absolute_threshold_value = absolute_threshold_value

# Response function coefficient
estResponseNode = Node(mrtrix.EstimateResponseForSH(), name = 'estimate_deconv_response')

# CSD computation
csdNode = Node(mrtrix.ConstrainedSphericalDeconvolution(), name = 'compute_CSD')
Ejemplo n.º 2
0
def group_multregress_openfmri(dataset_dir, model_id=None, task_id=None, l1output_dir=None, out_dir=None, 
                               no_reversal=False, plugin=None, plugin_args=None, flamemodel='flame1',
                               nonparametric=False, use_spm=False):

    meta_workflow = Workflow(name='mult_regress')
    meta_workflow.base_dir = work_dir
    for task in task_id:
        task_name = get_taskname(dataset_dir, task)
        cope_ids = l1_contrasts_num(model_id, task_name, dataset_dir)
        regressors_needed, contrasts, groups, subj_list = get_sub_vars(dataset_dir, task_name, model_id)
        for idx, contrast in enumerate(contrasts):
            wk = Workflow(name='model_%03d_task_%03d_contrast_%s' % (model_id, task, contrast[0][0]))

            info = Node(util.IdentityInterface(fields=['model_id', 'task_id', 'dataset_dir', 'subj_list']),
                        name='infosource')
            info.inputs.model_id = model_id
            info.inputs.task_id = task
            info.inputs.dataset_dir = dataset_dir
            
            dg = Node(DataGrabber(infields=['model_id', 'task_id', 'cope_id'],
                                  outfields=['copes', 'varcopes']), name='grabber')
            dg.inputs.template = os.path.join(l1output_dir,
                                              'model%03d/task%03d/%s/%scopes/%smni/%scope%02d.nii%s')
            if use_spm:
                dg.inputs.template_args['copes'] = [['model_id', 'task_id', subj_list, '', 'spm/',
                                                     '', 'cope_id', '']]
                dg.inputs.template_args['varcopes'] = [['model_id', 'task_id', subj_list, 'var', 'spm/',
                                                        'var', 'cope_id', '.gz']]
            else:
                dg.inputs.template_args['copes'] = [['model_id', 'task_id', subj_list, '', '', '', 
                                                     'cope_id', '.gz']]
                dg.inputs.template_args['varcopes'] = [['model_id', 'task_id', subj_list, 'var', '',
                                                        'var', 'cope_id', '.gz']]
            dg.iterables=('cope_id', cope_ids)
            dg.inputs.sort_filelist = False

            wk.connect(info, 'model_id', dg, 'model_id')
            wk.connect(info, 'task_id', dg, 'task_id')

            model = Node(MultipleRegressDesign(), name='l2model')
            model.inputs.groups = groups
            model.inputs.contrasts = contrasts[idx]
            model.inputs.regressors = regressors_needed[idx]
            
            mergecopes = Node(Merge(dimension='t'), name='merge_copes')
            wk.connect(dg, 'copes', mergecopes, 'in_files')
            
            if flamemodel != 'ols':
                mergevarcopes = Node(Merge(dimension='t'), name='merge_varcopes')
                wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')
            
            mask_file = fsl.Info.standard_image('MNI152_T1_2mm_brain_mask.nii.gz')
            flame = Node(FLAMEO(), name='flameo')
            flame.inputs.mask_file =  mask_file
            flame.inputs.run_mode = flamemodel
            #flame.inputs.infer_outliers = True

            wk.connect(model, 'design_mat', flame, 'design_file')
            wk.connect(model, 'design_con', flame, 't_con_file')
            wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
            if flamemodel != 'ols':
                wk.connect(mergevarcopes, 'merged_file', flame, 'var_cope_file')
            wk.connect(model, 'design_grp', flame, 'cov_split_file')
            
            if nonparametric:
                palm = Node(Function(input_names=['cope_file', 'design_file', 'contrast_file', 
                                                  'group_file', 'mask_file', 'cluster_threshold'],
                                     output_names=['palm_outputs'],
                                     function=run_palm),
                            name='palm')
                palm.inputs.cluster_threshold = 3.09
                palm.inputs.mask_file = mask_file
                palm.plugin_args = {'sbatch_args': '-p om_all_nodes -N1 -c2 --mem=10G', 'overwrite': True}
                wk.connect(model, 'design_mat', palm, 'design_file')
                wk.connect(model, 'design_con', palm, 'contrast_file')
                wk.connect(mergecopes, 'merged_file', palm, 'cope_file')
                wk.connect(model, 'design_grp', palm, 'group_file')
                
            smoothest = Node(SmoothEstimate(), name='smooth_estimate')
            wk.connect(flame, 'zstats', smoothest, 'zstat_file')
            smoothest.inputs.mask_file = mask_file
        
            cluster = Node(Cluster(), name='cluster')
            wk.connect(smoothest,'dlh', cluster, 'dlh')
            wk.connect(smoothest, 'volume', cluster, 'volume')
            cluster.inputs.connectivity = 26
            cluster.inputs.threshold = 2.3
            cluster.inputs.pthreshold = 0.05
            cluster.inputs.out_threshold_file = True
            cluster.inputs.out_index_file = True
            cluster.inputs.out_localmax_txt_file = True
            
            wk.connect(flame, 'zstats', cluster, 'in_file')
    
            ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                           name='z2pval')
            wk.connect(flame, 'zstats', ztopval,'in_file')
            
            sinker = Node(DataSink(), name='sinker')
            sinker.inputs.base_directory = os.path.join(out_dir, 'task%03d' % task, contrast[0][0])
            sinker.inputs.substitutions = [('_cope_id', 'contrast'),
                                           ('_maths_', '_reversed_')]
            
            wk.connect(flame, 'zstats', sinker, 'stats')
            wk.connect(cluster, 'threshold_file', sinker, 'stats.@thr')
            wk.connect(cluster, 'index_file', sinker, 'stats.@index')
            wk.connect(cluster, 'localmax_txt_file', sinker, 'stats.@localmax')
            if nonparametric:
                wk.connect(palm, 'palm_outputs', sinker, 'stats.palm')

            if not no_reversal:
                zstats_reverse = Node( BinaryMaths()  , name='zstats_reverse')
                zstats_reverse.inputs.operation = 'mul'
                zstats_reverse.inputs.operand_value = -1
                wk.connect(flame, 'zstats', zstats_reverse, 'in_file')
                
                cluster2=cluster.clone(name='cluster2')
                wk.connect(smoothest, 'dlh', cluster2, 'dlh')
                wk.connect(smoothest, 'volume', cluster2, 'volume')
                wk.connect(zstats_reverse, 'out_file', cluster2, 'in_file')
                
                ztopval2 = ztopval.clone(name='ztopval2')
                wk.connect(zstats_reverse, 'out_file', ztopval2, 'in_file')
                
                wk.connect(zstats_reverse, 'out_file', sinker, 'stats.@neg')
                wk.connect(cluster2, 'threshold_file', sinker, 'stats.@neg_thr')
                wk.connect(cluster2, 'index_file',sinker, 'stats.@neg_index')
                wk.connect(cluster2, 'localmax_txt_file', sinker, 'stats.@neg_localmax')
            meta_workflow.add_nodes([wk])
    return meta_workflow
def group_onesample_openfmri(dataset_dir,model_id=None,task_id=None,l1output_dir=None,out_dir=None, no_reversal=False):

    wk = Workflow(name='one_sample')
    wk.base_dir = os.path.abspath(work_dir)

    info = Node(util.IdentityInterface(fields=['model_id','task_id','dataset_dir']),
                                        name='infosource')
    info.inputs.model_id=model_id
    info.inputs.task_id=task_id
    info.inputs.dataset_dir=dataset_dir
    
    num_copes=contrasts_num(model_id,task_id,dataset_dir)

    dg = Node(DataGrabber(infields=['model_id','task_id','cope_id'], 
                          outfields=['copes', 'varcopes']),name='grabber')
    dg.inputs.template = os.path.join(l1output_dir,'model%03d/task%03d/*/%scopes/mni/%scope%02d.nii.gz')
    dg.inputs.template_args['copes'] = [['model_id','task_id','', '', 'cope_id']]
    dg.inputs.template_args['varcopes'] = [['model_id','task_id','var', 'var', 'cope_id']]
    dg.iterables=('cope_id',num_copes)

    dg.inputs.sort_filelist = True

    wk.connect(info,'model_id',dg,'model_id')
    wk.connect(info,'task_id',dg,'task_id')

    model = Node(L2Model(), name='l2model')

    wk.connect(dg, ('copes', get_len), model, 'num_copes')

    mergecopes = Node(Merge(dimension='t'), name='merge_copes')
    wk.connect(dg, 'copes', mergecopes, 'in_files')

    mergevarcopes = Node(Merge(dimension='t'), name='merge_varcopes')
    wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')

    mask_file = fsl.Info.standard_image('MNI152_T1_2mm_brain_mask.nii.gz')
    flame = Node(FLAMEO(), name='flameo')
    flame.inputs.mask_file =  mask_file
    flame.inputs.run_mode = 'flame1'

    wk.connect(model, 'design_mat', flame, 'design_file')
    wk.connect(model, 'design_con', flame, 't_con_file')
    wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
    wk.connect(mergevarcopes, 'merged_file', flame, 'var_cope_file')
    wk.connect(model, 'design_grp', flame, 'cov_split_file')

    smoothest = Node(SmoothEstimate(), name='smooth_estimate') 
    wk.connect(flame, 'zstats', smoothest, 'zstat_file')
    smoothest.inputs.mask_file = mask_file

  
    cluster = Node(Cluster(), name='cluster')
    wk.connect(smoothest,'dlh', cluster, 'dlh')
    wk.connect(smoothest, 'volume', cluster, 'volume')
    cluster.inputs.connectivity = 26
    cluster.inputs.threshold=2.3
    cluster.inputs.pthreshold = 0.05
    cluster.inputs.out_threshold_file = True
    cluster.inputs.out_index_file = True
    cluster.inputs.out_localmax_txt_file = True

    wk.connect(flame, 'zstats', cluster, 'in_file')
	 
    ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                   name='z2pval')
    wk.connect(flame, 'zstats', ztopval,'in_file')
    
    

    sinker = Node(DataSink(), name='sinker')  
    sinker.inputs.base_directory = os.path.abspath(out_dir)
    sinker.inputs.substitutions = [('_cope_id', 'contrast'),
			            ('_maths__', '_reversed_')]
    
    wk.connect(flame, 'zstats', sinker, 'stats')
    wk.connect(cluster, 'threshold_file', sinker, 'stats.@thr')
    wk.connect(cluster, 'index_file', sinker, 'stats.@index')
    wk.connect(cluster, 'localmax_txt_file', sinker, 'stats.@localmax')
    
    if no_reversal == False:
        zstats_reverse = Node( BinaryMaths()  , name='zstats_reverse')
        zstats_reverse.inputs.operation = 'mul'
        zstats_reverse.inputs.operand_value= -1
        wk.connect(flame, 'zstats', zstats_reverse, 'in_file')

        cluster2=cluster.clone(name='cluster2')
        wk.connect(smoothest,'dlh',cluster2,'dlh')
        wk.connect(smoothest,'volume',cluster2,'volume')
        wk.connect(zstats_reverse,'out_file',cluster2,'in_file')
   
        ztopval2 = ztopval.clone(name='ztopval2')
        wk.connect(zstats_reverse,'out_file',ztopval2,'in_file')

        wk.connect(zstats_reverse,'out_file',sinker,'stats.@neg')
        wk.connect(cluster2,'threshold_file',sinker,'stats.@neg_thr')
        wk.connect(cluster2,'index_file',sinker,'stats.@neg_index')
        wk.connect(cluster2,'localmax_txt_file',sinker,'stats.@neg_localmax')

    return wk
def group_multregress_openfmri(dataset_dir,
                               model_id=None,
                               task_id=None,
                               l1output_dir=None,
                               out_dir=None,
                               no_reversal=False,
                               plugin=None,
                               plugin_args=None,
                               flamemodel='flame1',
                               nonparametric=False,
                               use_spm=False):

    meta_workflow = Workflow(name='mult_regress')
    meta_workflow.base_dir = work_dir
    for task in task_id:
        task_name = get_taskname(dataset_dir, task)
        cope_ids = l1_contrasts_num(model_id, task_name, dataset_dir)
        regressors_needed, contrasts, groups, subj_list = get_sub_vars(
            dataset_dir, task_name, model_id)
        for idx, contrast in enumerate(contrasts):
            wk = Workflow(name='model_%03d_task_%03d_contrast_%s' %
                          (model_id, task, contrast[0][0]))

            info = Node(util.IdentityInterface(
                fields=['model_id', 'task_id', 'dataset_dir', 'subj_list']),
                        name='infosource')
            info.inputs.model_id = model_id
            info.inputs.task_id = task
            info.inputs.dataset_dir = dataset_dir

            dg = Node(DataGrabber(infields=['model_id', 'task_id', 'cope_id'],
                                  outfields=['copes', 'varcopes']),
                      name='grabber')
            dg.inputs.template = os.path.join(
                l1output_dir,
                'model%03d/task%03d/%s/%scopes/%smni/%scope%02d.nii%s')
            if use_spm:
                dg.inputs.template_args['copes'] = [[
                    'model_id', 'task_id', subj_list, '', 'spm/', '',
                    'cope_id', ''
                ]]
                dg.inputs.template_args['varcopes'] = [[
                    'model_id', 'task_id', subj_list, 'var', 'spm/', 'var',
                    'cope_id', '.gz'
                ]]
            else:
                dg.inputs.template_args['copes'] = [[
                    'model_id', 'task_id', subj_list, '', '', '', 'cope_id',
                    '.gz'
                ]]
                dg.inputs.template_args['varcopes'] = [[
                    'model_id', 'task_id', subj_list, 'var', '', 'var',
                    'cope_id', '.gz'
                ]]
            dg.iterables = ('cope_id', cope_ids)
            dg.inputs.sort_filelist = False

            wk.connect(info, 'model_id', dg, 'model_id')
            wk.connect(info, 'task_id', dg, 'task_id')

            model = Node(MultipleRegressDesign(), name='l2model')
            model.inputs.groups = groups
            model.inputs.contrasts = contrasts[idx]
            model.inputs.regressors = regressors_needed[idx]

            mergecopes = Node(Merge(dimension='t'), name='merge_copes')
            wk.connect(dg, 'copes', mergecopes, 'in_files')

            if flamemodel != 'ols':
                mergevarcopes = Node(Merge(dimension='t'),
                                     name='merge_varcopes')
                wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')

            mask_file = fsl.Info.standard_image(
                'MNI152_T1_2mm_brain_mask.nii.gz')
            flame = Node(FLAMEO(), name='flameo')
            flame.inputs.mask_file = mask_file
            flame.inputs.run_mode = flamemodel
            #flame.inputs.infer_outliers = True

            wk.connect(model, 'design_mat', flame, 'design_file')
            wk.connect(model, 'design_con', flame, 't_con_file')
            wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
            if flamemodel != 'ols':
                wk.connect(mergevarcopes, 'merged_file', flame,
                           'var_cope_file')
            wk.connect(model, 'design_grp', flame, 'cov_split_file')

            if nonparametric:
                palm = Node(Function(input_names=[
                    'cope_file', 'design_file', 'contrast_file', 'group_file',
                    'mask_file', 'cluster_threshold'
                ],
                                     output_names=['palm_outputs'],
                                     function=run_palm),
                            name='palm')
                palm.inputs.cluster_threshold = 3.09
                palm.inputs.mask_file = mask_file
                palm.plugin_args = {
                    'sbatch_args': '-p om_all_nodes -N1 -c2 --mem=10G',
                    'overwrite': True
                }
                wk.connect(model, 'design_mat', palm, 'design_file')
                wk.connect(model, 'design_con', palm, 'contrast_file')
                wk.connect(mergecopes, 'merged_file', palm, 'cope_file')
                wk.connect(model, 'design_grp', palm, 'group_file')

            smoothest = Node(SmoothEstimate(), name='smooth_estimate')
            wk.connect(flame, 'zstats', smoothest, 'zstat_file')
            smoothest.inputs.mask_file = mask_file

            cluster = Node(Cluster(), name='cluster')
            wk.connect(smoothest, 'dlh', cluster, 'dlh')
            wk.connect(smoothest, 'volume', cluster, 'volume')
            cluster.inputs.connectivity = 26
            cluster.inputs.threshold = 2.3
            cluster.inputs.pthreshold = 0.05
            cluster.inputs.out_threshold_file = True
            cluster.inputs.out_index_file = True
            cluster.inputs.out_localmax_txt_file = True

            wk.connect(flame, 'zstats', cluster, 'in_file')

            ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                           name='z2pval')
            wk.connect(flame, 'zstats', ztopval, 'in_file')

            sinker = Node(DataSink(), name='sinker')
            sinker.inputs.base_directory = os.path.join(
                out_dir, 'task%03d' % task, contrast[0][0])
            sinker.inputs.substitutions = [('_cope_id', 'contrast'),
                                           ('_maths_', '_reversed_')]

            wk.connect(flame, 'zstats', sinker, 'stats')
            wk.connect(cluster, 'threshold_file', sinker, 'stats.@thr')
            wk.connect(cluster, 'index_file', sinker, 'stats.@index')
            wk.connect(cluster, 'localmax_txt_file', sinker, 'stats.@localmax')
            if nonparametric:
                wk.connect(palm, 'palm_outputs', sinker, 'stats.palm')

            if not no_reversal:
                zstats_reverse = Node(BinaryMaths(), name='zstats_reverse')
                zstats_reverse.inputs.operation = 'mul'
                zstats_reverse.inputs.operand_value = -1
                wk.connect(flame, 'zstats', zstats_reverse, 'in_file')

                cluster2 = cluster.clone(name='cluster2')
                wk.connect(smoothest, 'dlh', cluster2, 'dlh')
                wk.connect(smoothest, 'volume', cluster2, 'volume')
                wk.connect(zstats_reverse, 'out_file', cluster2, 'in_file')

                ztopval2 = ztopval.clone(name='ztopval2')
                wk.connect(zstats_reverse, 'out_file', ztopval2, 'in_file')

                wk.connect(zstats_reverse, 'out_file', sinker, 'stats.@neg')
                wk.connect(cluster2, 'threshold_file', sinker,
                           'stats.@neg_thr')
                wk.connect(cluster2, 'index_file', sinker, 'stats.@neg_index')
                wk.connect(cluster2, 'localmax_txt_file', sinker,
                           'stats.@neg_localmax')
            meta_workflow.add_nodes([wk])
    return meta_workflow
Ejemplo n.º 5
0
def create_workflow(files,
                    subject_id,
                    n_vol=0,
                    despike=True,
                    TR=None,
                    slice_times=None,
                    slice_thickness=None,
                    fieldmap_images=[],
                    norm_threshold=1,
                    num_components=6,
                    vol_fwhm=None,
                    surf_fwhm=None,
                    lowpass_freq=-1,
                    highpass_freq=-1,
                    sink_directory=os.getcwd(),
                    FM_TEdiff=2.46,
                    FM_sigma=2,
                    FM_echo_spacing=.7,
                    target_subject=['fsaverage3', 'fsaverage4'],
                    name='resting'):

    wf = Workflow(name=name)

    # Skip starting volumes
    remove_vol = MapNode(fsl.ExtractROI(t_min=n_vol, t_size=-1),
                         iterfield=['in_file'],
                         name="remove_volumes")
    remove_vol.inputs.in_file = files

    # Run AFNI's despike. This is always run, however, whether this is fed to
    # realign depends on the input configuration
    despiker = MapNode(afni.Despike(outputtype='NIFTI_GZ'),
                       iterfield=['in_file'],
                       name='despike')
    #despiker.plugin_args = {'qsub_args': '-l nodes=1:ppn='}

    wf.connect(remove_vol, 'roi_file', despiker, 'in_file')

    # Run Nipy joint slice timing and realignment algorithm
    realign = Node(nipy.SpaceTimeRealigner(), name='realign')
    realign.inputs.tr = TR
    realign.inputs.slice_times = slice_times
    realign.inputs.slice_info = 2

    if despike:
        wf.connect(despiker, 'out_file', realign, 'in_file')
    else:
        wf.connect(remove_vol, 'roi_file', realign, 'in_file')

    # Comute TSNR on realigned data regressing polynomials upto order 2
    tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(realign, 'out_file', tsnr, 'in_file')

    # Compute the median image across runs
    calc_median = Node(Function(input_names=['in_files'],
                                output_names=['median_file'],
                                function=median,
                                imports=imports),
                       name='median')
    wf.connect(tsnr, 'detrended_file', calc_median, 'in_files')

    # Coregister the median to the surface
    register = Node(freesurfer.BBRegister(), name='bbregister')
    register.inputs.subject_id = subject_id
    register.inputs.init = 'fsl'
    register.inputs.contrast_type = 't2'
    register.inputs.out_fsl_file = True
    register.inputs.epi_mask = True

    # Compute fieldmaps and unwarp using them
    if fieldmap_images:
        fieldmap = Node(interface=EPIDeWarp(), name='fieldmap_unwarp')
        fieldmap.inputs.tediff = FM_TEdiff
        fieldmap.inputs.esp = FM_echo_spacing
        fieldmap.inputs.sigma = FM_sigma
        fieldmap.inputs.mag_file = fieldmap_images[0]
        fieldmap.inputs.dph_file = fieldmap_images[1]
        wf.connect(calc_median, 'median_file', fieldmap, 'exf_file')

        dewarper = MapNode(interface=fsl.FUGUE(),
                           iterfield=['in_file'],
                           name='dewarper')
        wf.connect(tsnr, 'detrended_file', dewarper, 'in_file')
        wf.connect(fieldmap, 'exf_mask', dewarper, 'mask_file')
        wf.connect(fieldmap, 'vsm_file', dewarper, 'shift_in_file')
        wf.connect(fieldmap, 'exfdw', register, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', register, 'source_file')

    # Get the subject's freesurfer source directory
    fssource = Node(FreeSurferSource(), name='fssource')
    fssource.inputs.subject_id = subject_id
    fssource.inputs.subjects_dir = os.environ['SUBJECTS_DIR']

    # Extract wm+csf, brain masks by eroding freesurfer labels and then
    # transform the masks into the space of the median
    wmcsf = Node(freesurfer.Binarize(), name='wmcsfmask')
    mask = wmcsf.clone('anatmask')
    wmcsftransform = Node(freesurfer.ApplyVolTransform(inverse=True,
                                                       interp='nearest'),
                          name='wmcsftransform')
    wmcsftransform.inputs.subjects_dir = os.environ['SUBJECTS_DIR']
    wmcsf.inputs.wm_ven_csf = True
    wmcsf.inputs.match = [4, 5, 14, 15, 24, 31, 43, 44, 63]
    wmcsf.inputs.binary_file = 'wmcsf.nii.gz'
    wmcsf.inputs.erode = int(np.ceil(slice_thickness))
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), wmcsf, 'in_file')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', wmcsftransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', wmcsftransform, 'source_file')
    wf.connect(register, 'out_reg_file', wmcsftransform, 'reg_file')
    wf.connect(wmcsf, 'binary_file', wmcsftransform, 'target_file')

    mask.inputs.binary_file = 'mask.nii.gz'
    mask.inputs.dilate = int(np.ceil(slice_thickness)) + 1
    mask.inputs.erode = int(np.ceil(slice_thickness))
    mask.inputs.min = 0.5
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), mask, 'in_file')
    masktransform = wmcsftransform.clone("masktransform")
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', masktransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', masktransform, 'source_file')
    wf.connect(register, 'out_reg_file', masktransform, 'reg_file')
    wf.connect(mask, 'binary_file', masktransform, 'target_file')

    # Compute Art outliers
    art = Node(interface=ArtifactDetect(use_differences=[True, False],
                                        use_norm=True,
                                        norm_threshold=norm_threshold,
                                        zintensity_threshold=3,
                                        parameter_source='NiPy',
                                        bound_by_brainmask=True,
                                        save_plot=False,
                                        mask_type='file'),
               name="art")
    if fieldmap_images:
        wf.connect(dewarper, 'unwarped_file', art, 'realigned_files')
    else:
        wf.connect(tsnr, 'detrended_file', art, 'realigned_files')
    wf.connect(realign, 'par_file', art, 'realignment_parameters')
    wf.connect(masktransform, 'transformed_file', art, 'mask_file')

    # Compute motion regressors
    motreg = Node(Function(
        input_names=['motion_params', 'order', 'derivatives'],
        output_names=['out_files'],
        function=motion_regressors,
        imports=imports),
                  name='getmotionregress')
    wf.connect(realign, 'par_file', motreg, 'motion_params')

    # Create a filter to remove motion and art confounds
    createfilter1 = Node(Function(
        input_names=['motion_params', 'comp_norm', 'outliers'],
        output_names=['out_files'],
        function=build_filter1,
        imports=imports),
                         name='makemotionbasedfilter')
    wf.connect(motreg, 'out_files', createfilter1, 'motion_params')
    wf.connect(art, 'norm_files', createfilter1, 'comp_norm')
    wf.connect(art, 'outlier_files', createfilter1, 'outliers')

    # Filter the motion and art confounds
    filter1 = MapNode(fsl.GLM(out_res_name='timeseries.nii.gz', demean=True),
                      iterfield=['in_file', 'design'],
                      name='filtermotion')
    if fieldmap_images:
        wf.connect(dewarper, 'unwarped_file', filter1, 'in_file')
    else:
        wf.connect(tsnr, 'detrended_file', filter1, 'in_file')
    wf.connect(createfilter1, 'out_files', filter1, 'design')
    wf.connect(masktransform, 'transformed_file', filter1, 'mask')

    # Create a filter to remove noise components based on white matter and CSF
    createfilter2 = MapNode(Function(
        input_names=['realigned_file', 'mask_file', 'num_components'],
        output_names=['out_files'],
        function=extract_noise_components,
        imports=imports),
                            iterfield=['realigned_file'],
                            name='makecompcorrfilter')
    createfilter2.inputs.num_components = num_components
    wf.connect(filter1, 'out_res', createfilter2, 'realigned_file')
    wf.connect(masktransform, 'transformed_file', createfilter2, 'mask_file')

    # Filter noise components
    filter2 = MapNode(fsl.GLM(out_res_name='timeseries_cleaned.nii.gz',
                              demean=True),
                      iterfield=['in_file', 'design'],
                      name='filtercompcorr')
    wf.connect(filter1, 'out_res', filter2, 'in_file')
    wf.connect(createfilter2, 'out_files', filter2, 'design')
    wf.connect(masktransform, 'transformed_file', filter2, 'mask')

    # Smoothing using surface and volume smoothing
    smooth = MapNode(freesurfer.Smooth(), iterfield=['in_file'], name='smooth')
    smooth.inputs.proj_frac_avg = (0.1, 0.9, 0.1)
    if surf_fwhm is None:
        surf_fwhm = 5 * slice_thickness
    smooth.inputs.surface_fwhm = surf_fwhm
    if vol_fwhm is None:
        vol_fwhm = 2 * slice_thickness
    smooth.inputs.vol_fwhm = vol_fwhm
    wf.connect(filter2, 'out_res', smooth, 'in_file')
    wf.connect(register, 'out_reg_file', smooth, 'reg_file')

    # Bandpass filter the data
    bandpass = MapNode(fsl.TemporalFilter(),
                       iterfield=['in_file'],
                       name='bandpassfilter')
    if highpass_freq < 0:
        bandpass.inputs.highpass_sigma = -1
    else:
        bandpass.inputs.highpass_sigma = 1. / (2 * TR * highpass_freq)
    if lowpass_freq < 0:
        bandpass.inputs.lowpass_sigma = -1
    else:
        bandpass.inputs.lowpass_sigma = 1. / (2 * TR * lowpass_freq)
    wf.connect(smooth, 'smoothed_file', bandpass, 'in_file')

    # Convert aparc to subject functional space
    aparctransform = wmcsftransform.clone("aparctransform")
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', aparctransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', aparctransform, 'source_file')
    wf.connect(register, 'out_reg_file', aparctransform, 'reg_file')
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), aparctransform,
               'target_file')

    # Sample the average time series in aparc ROIs
    sampleaparc = MapNode(freesurfer.SegStats(avgwf_txt_file=True,
                                              default_color_table=True),
                          iterfield=['in_file'],
                          name='aparc_ts')
    sampleaparc.inputs.segment_id = ([8] + range(10, 14) + [17, 18, 26, 47] +
                                     range(49, 55) + [58] + range(1001, 1036) +
                                     range(2001, 2036))

    wf.connect(aparctransform, 'transformed_file', sampleaparc,
               'segmentation_file')
    wf.connect(bandpass, 'out_file', sampleaparc, 'in_file')

    # Sample the time series onto the surface of the target surface. Performs
    # sampling into left and right hemisphere
    target = Node(IdentityInterface(fields=['target_subject']), name='target')
    target.iterables = ('target_subject', filename_to_list(target_subject))

    samplerlh = MapNode(freesurfer.SampleToSurface(),
                        iterfield=['source_file'],
                        name='sampler_lh')
    samplerlh.inputs.sampling_method = "average"
    samplerlh.inputs.sampling_range = (0.1, 0.9, 0.1)
    samplerlh.inputs.sampling_units = "frac"
    samplerlh.inputs.interp_method = "trilinear"
    #samplerlh.inputs.cortex_mask = True
    samplerlh.inputs.out_type = 'niigz'
    samplerlh.inputs.subjects_dir = os.environ['SUBJECTS_DIR']

    samplerrh = samplerlh.clone('sampler_rh')

    samplerlh.inputs.hemi = 'lh'
    wf.connect(bandpass, 'out_file', samplerlh, 'source_file')
    wf.connect(register, 'out_reg_file', samplerlh, 'reg_file')
    wf.connect(target, 'target_subject', samplerlh, 'target_subject')

    samplerrh.set_input('hemi', 'rh')
    wf.connect(bandpass, 'out_file', samplerrh, 'source_file')
    wf.connect(register, 'out_reg_file', samplerrh, 'reg_file')
    wf.connect(target, 'target_subject', samplerrh, 'target_subject')

    # Combine left and right hemisphere to text file
    combiner = MapNode(Function(input_names=['left', 'right'],
                                output_names=['out_file'],
                                function=combine_hemi,
                                imports=imports),
                       iterfield=['left', 'right'],
                       name="combiner")
    wf.connect(samplerlh, 'out_file', combiner, 'left')
    wf.connect(samplerrh, 'out_file', combiner, 'right')

    # Compute registration between the subject's structural and MNI template
    # This is currently set to perform a very quick registration. However, the
    # registration can be made significantly more accurate for cortical
    # structures by increasing the number of iterations
    # All parameters are set using the example from:
    # https://github.com/stnava/ANTs/blob/master/Scripts/newAntsExample.sh
    reg = Node(ants.Registration(), name='antsRegister')
    reg.inputs.output_transform_prefix = "output_"
    reg.inputs.transforms = ['Translation', 'Rigid', 'Affine', 'SyN']
    reg.inputs.transform_parameters = [(0.1, ), (0.1, ), (0.1, ),
                                       (0.2, 3.0, 0.0)]
    # reg.inputs.number_of_iterations = ([[10000, 111110, 11110]]*3 +
    #                                    [[100, 50, 30]])
    reg.inputs.number_of_iterations = [[100, 100, 100]] * 3 + [[100, 20, 10]]
    reg.inputs.dimension = 3
    reg.inputs.write_composite_transform = True
    reg.inputs.collapse_output_transforms = False
    reg.inputs.metric = ['Mattes'] * 3 + [['Mattes', 'CC']]
    reg.inputs.metric_weight = [1] * 3 + [[0.5, 0.5]]
    reg.inputs.radius_or_number_of_bins = [32] * 3 + [[32, 4]]
    reg.inputs.sampling_strategy = ['Regular'] * 3 + [[None, None]]
    reg.inputs.sampling_percentage = [0.3] * 3 + [[None, None]]
    reg.inputs.convergence_threshold = [1.e-8] * 3 + [-0.01]
    reg.inputs.convergence_window_size = [20] * 3 + [5]
    reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 3 + [[1, 0.5, 0]]
    reg.inputs.sigma_units = ['vox'] * 4
    reg.inputs.shrink_factors = [[6, 4, 2]] + [[3, 2, 1]] * 2 + [[4, 2, 1]]
    reg.inputs.use_estimate_learning_rate_once = [True] * 4
    reg.inputs.use_histogram_matching = [False] * 3 + [True]
    reg.inputs.output_warped_image = 'output_warped_image.nii.gz'
    reg.inputs.fixed_image = \
        os.path.abspath('OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz')
    reg.inputs.num_threads = 4
    reg.plugin_args = {'qsub_args': '-l nodes=1:ppn=4'}

    # Convert T1.mgz to nifti for using with ANTS
    convert = Node(freesurfer.MRIConvert(out_type='niigz'), name='convert2nii')
    wf.connect(fssource, 'T1', convert, 'in_file')

    # Mask the T1.mgz file with the brain mask computed earlier
    maskT1 = Node(fsl.BinaryMaths(operation='mul'), name='maskT1')
    wf.connect(mask, 'binary_file', maskT1, 'operand_file')
    wf.connect(convert, 'out_file', maskT1, 'in_file')
    wf.connect(maskT1, 'out_file', reg, 'moving_image')

    # Convert the BBRegister transformation to ANTS ITK format
    convert2itk = MapNode(C3dAffineTool(),
                          iterfield=['transform_file', 'source_file'],
                          name='convert2itk')
    convert2itk.inputs.fsl2ras = True
    convert2itk.inputs.itk_transform = True
    wf.connect(register, 'out_fsl_file', convert2itk, 'transform_file')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', convert2itk, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', convert2itk, 'source_file')
    wf.connect(convert, 'out_file', convert2itk, 'reference_file')

    # Concatenate the affine and ants transforms into a list
    pickfirst = lambda x: x[0]
    merge = MapNode(Merge(2), iterfield=['in2'], name='mergexfm')
    wf.connect(convert2itk, 'itk_transform', merge, 'in2')
    wf.connect(reg, ('composite_transform', pickfirst), merge, 'in1')

    # Apply the combined transform to the time series file
    sample2mni = MapNode(ants.ApplyTransforms(),
                         iterfield=['input_image', 'transforms'],
                         name='sample2mni')
    sample2mni.inputs.input_image_type = 3
    sample2mni.inputs.interpolation = 'BSpline'
    sample2mni.inputs.invert_transform_flags = [False, False]
    sample2mni.inputs.reference_image = \
        os.path.abspath('OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz')
    sample2mni.inputs.terminal_output = 'file'
    wf.connect(bandpass, 'out_file', sample2mni, 'input_image')
    wf.connect(merge, 'out', sample2mni, 'transforms')

    # Sample the time series file for each subcortical roi
    ts2txt = MapNode(Function(
        input_names=['timeseries_file', 'label_file', 'indices'],
        output_names=['out_file'],
        function=extract_subrois,
        imports=imports),
                     iterfield=['timeseries_file'],
                     name='getsubcortts')
    ts2txt.inputs.indices = [8] + range(10, 14) + [17, 18, 26, 47] +\
                            range(49, 55) + [58]
    ts2txt.inputs.label_file = \
        os.path.abspath(('OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152_'
                         '2mm.nii.gz'))
    wf.connect(sample2mni, 'output_image', ts2txt, 'timeseries_file')

    # Save the relevant data into an output directory
    datasink = Node(interface=DataSink(), name="datasink")
    datasink.inputs.base_directory = sink_directory
    datasink.inputs.container = subject_id
    datasink.inputs.substitutions = [('_target_subject_', '')]
    datasink.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(despiker, 'out_file', datasink, 'resting.qa.despike')
    wf.connect(realign, 'par_file', datasink, 'resting.qa.motion')
    wf.connect(tsnr, 'tsnr_file', datasink, 'resting.qa.tsnr')
    wf.connect(tsnr, 'mean_file', datasink, 'resting.qa.tsnr.@mean')
    wf.connect(tsnr, 'stddev_file', datasink, 'resting.qa.@tsnr_stddev')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', datasink, 'resting.reference')
    else:
        wf.connect(calc_median, 'median_file', datasink, 'resting.reference')
    wf.connect(art, 'norm_files', datasink, 'resting.qa.art.@norm')
    wf.connect(art, 'intensity_files', datasink, 'resting.qa.art.@intensity')
    wf.connect(art, 'outlier_files', datasink, 'resting.qa.art.@outlier_files')
    wf.connect(mask, 'binary_file', datasink, 'resting.mask')
    wf.connect(masktransform, 'transformed_file', datasink,
               'resting.mask.@transformed_file')
    wf.connect(register, 'out_reg_file', datasink,
               'resting.registration.bbreg')
    wf.connect(reg, ('composite_transform', pickfirst), datasink,
               'resting.registration.ants')
    wf.connect(register, 'min_cost_file', datasink,
               'resting.qa.bbreg.@mincost')
    wf.connect(smooth, 'smoothed_file', datasink,
               'resting.timeseries.fullpass')
    wf.connect(bandpass, 'out_file', datasink, 'resting.timeseries.bandpassed')
    wf.connect(sample2mni, 'output_image', datasink, 'resting.timeseries.mni')
    wf.connect(createfilter1, 'out_files', datasink,
               'resting.regress.@regressors')
    wf.connect(createfilter2, 'out_files', datasink,
               'resting.regress.@compcorr')
    wf.connect(sampleaparc, 'summary_file', datasink,
               'resting.parcellations.aparc')
    wf.connect(sampleaparc, 'avgwf_txt_file', datasink,
               'resting.parcellations.aparc.@avgwf')
    wf.connect(ts2txt, 'out_file', datasink,
               'resting.parcellations.grayo.@subcortical')
    datasink2 = Node(interface=DataSink(), name="datasink2")
    datasink2.inputs.base_directory = sink_directory
    datasink2.inputs.container = subject_id
    datasink2.inputs.substitutions = [('_target_subject_', '')]
    datasink2.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(combiner, 'out_file', datasink2,
               'resting.parcellations.grayo.@surface')
    return wf
def create_workflow(files,
                    anat_file,
                    subject_id,
                    TR,
                    num_slices,
                    norm_threshold=1,
                    num_components=5,
                    vol_fwhm=None,
                    lowpass_freq=-1,
                    highpass_freq=-1,
                    sink_directory=os.getcwd(),
                    name='resting'):

    wf = Workflow(name=name)

    # Rename files in case they are named identically
    name_unique = MapNode(Rename(format_string='rest_%(run)02d'),
                          iterfield=['in_file', 'run'],
                          name='rename')
    name_unique.inputs.keep_ext = True
    name_unique.inputs.run = range(1, len(files) + 1)
    name_unique.inputs.in_file = files

    realign = Node(interface=spm.Realign(), name="realign")
    realign.inputs.jobtype = 'estwrite'

    slice_timing = Node(interface=spm.SliceTiming(), name="slice_timing")
    slice_timing.inputs.num_slices = num_slices
    slice_timing.inputs.time_repetition = TR
    slice_timing.inputs.time_acquisition = TR - TR/float(num_slices)
    slice_timing.inputs.slice_order = range(1, num_slices + 1, 2) + range(2, num_slices + 1, 2)
    slice_timing.inputs.ref_slice = int(num_slices/2)

    """Use :class:`nipype.interfaces.spm.Coregister` to perform a rigid
    body registration of the functional data to the structural data.
    """

    coregister = Node(interface=spm.Coregister(), name="coregister")
    coregister.inputs.jobtype = 'estimate'
    coregister.inputs.target = anat_file

    """Use :class:`nipype.algorithms.rapidart` to determine which of the
    images in the functional series are outliers based on deviations in
    intensity or movement.
    """

    art = Node(interface=ArtifactDetect(), name="art")
    art.inputs.use_differences = [True, False]
    art.inputs.use_norm = True
    art.inputs.norm_threshold = norm_threshold
    art.inputs.zintensity_threshold = 3
    art.inputs.mask_type = 'spm_global'
    art.inputs.parameter_source = 'SPM'

    segment = Node(interface=spm.Segment(), name="segment")
    segment.inputs.save_bias_corrected = True
    segment.inputs.data = anat_file

    """Uncomment the following line for faster execution
    """

    #segment.inputs.gaussians_per_class = [1, 1, 1, 4]

    """Warp functional and structural data to SPM's T1 template using
    :class:`nipype.interfaces.spm.Normalize`.  The tutorial data set
    includes the template image, T1.nii.
    """

    normalize_func = Node(interface=spm.Normalize(), name = "normalize_func")
    normalize_func.inputs.jobtype = "write"
    normalize_func.inputs.write_voxel_sizes =[2., 2., 2.]

    """Smooth the functional data using
    :class:`nipype.interfaces.spm.Smooth`.
    """

    smooth = Node(interface=spm.Smooth(), name = "smooth")
    smooth.inputs.fwhm = vol_fwhm

    """Here we are connecting all the nodes together. Notice that we add the merge node only if you choose
    to use 4D. Also `get_vox_dims` function is passed along the input volume of normalise to set the optimal
    voxel sizes.
    """

    wf.connect([(name_unique, realign, [('out_file', 'in_files')]),
                (realign, coregister, [('mean_image', 'source')]),
                (segment, normalize_func, [('transformation_mat', 'parameter_file')]),
                (realign, slice_timing, [('realigned_files', 'in_files')]),
                (slice_timing, normalize_func, [('timecorrected_files', 'apply_to_files')]),
                (normalize_func, smooth, [('normalized_files', 'in_files')]),
                (realign, art, [('realignment_parameters', 'realignment_parameters')]),
                (smooth, art, [('smoothed_files', 'realigned_files')]),
                ])

    def selectN(files, N=1):
        from nipype.utils.filemanip import filename_to_list, list_to_filename
        return list_to_filename(filename_to_list(files)[:N])

    mask = Node(fsl.BET(), name='getmask')
    mask.inputs.mask = True
    wf.connect(normalize_func, ('normalized_files', selectN, 1), mask, 'in_file')
    # get segmentation in normalized functional space

    segment.inputs.wm_output_type = [False, False, True]
    segment.inputs.csf_output_type = [False, False, True]
    segment.inputs.gm_output_type = [False, False, True]

    def merge_files(in1, in2):
        out_files = filename_to_list(in1)
        out_files.extend(filename_to_list(in2))
        return out_files

    merge = Node(Merge(3), name='merge')
    wf.connect(segment, 'native_wm_image', merge, 'in1')
    wf.connect(segment, 'native_csf_image', merge, 'in2')
    wf.connect(segment, 'native_gm_image', merge, 'in3')

    normalize_segs = Node(interface=spm.Normalize(), name = "normalize_segs")
    normalize_segs.inputs.jobtype = "write"
    normalize_segs.inputs.write_voxel_sizes = [2., 2., 2.]

    wf.connect(merge, 'out', normalize_segs, 'apply_to_files')
    wf.connect(segment, 'transformation_mat', normalize_segs, 'parameter_file')

    # binarize and erode
    bin_and_erode = MapNode(fsl.ImageMaths(),
                            iterfield=['in_file'],
                            name='bin_and_erode')
    bin_and_erode.inputs.op_string = '-thr 0.99 -bin -ero'

    wf.connect(normalize_segs, 'normalized_files',
               bin_and_erode, 'in_file')

    # filter some noise

    # Compute motion regressors
    motreg = Node(Function(input_names=['motion_params', 'order',
                                        'derivatives'],
                           output_names=['out_files'],
                           function=motion_regressors,
                           imports=imports),
                  name='getmotionregress')
    wf.connect(realign, 'realignment_parameters', motreg, 'motion_params')

    # Create a filter to remove motion and art confounds
    createfilter1 = Node(Function(input_names=['motion_params', 'comp_norm',
                                               'outliers', 'detrend_poly'],
                                  output_names=['out_files'],
                                  function=build_filter1,
                                  imports=imports),
                         name='makemotionbasedfilter')
    createfilter1.inputs.detrend_poly = 2
    wf.connect(motreg, 'out_files', createfilter1, 'motion_params')
    wf.connect(art, 'norm_files', createfilter1, 'comp_norm')
    wf.connect(art, 'outlier_files', createfilter1, 'outliers')

    # Filter the motion and art confounds and detrend
    filter1 = MapNode(fsl.GLM(out_f_name='F_mcart.nii',
                              out_pf_name='pF_mcart.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filtermotion')

    wf.connect(normalize_func, 'normalized_files', filter1, 'in_file')
    wf.connect(normalize_func, ('normalized_files', rename, '_filtermotart'),
               filter1, 'out_res_name')
    wf.connect(createfilter1, 'out_files', filter1, 'design')
    #wf.connect(masktransform, 'transformed_file', filter1, 'mask')

    # Create a filter to remove noise components based on white matter and CSF
    createfilter2 = MapNode(Function(input_names=['realigned_file', 'mask_file',
                                                  'num_components',
                                                  'extra_regressors'],
                                     output_names=['out_files'],
                                     function=extract_noise_components,
                                     imports=imports),
                            iterfield=['realigned_file', 'extra_regressors'],
                            name='makecompcorrfilter')
    createfilter2.inputs.num_components = num_components
    wf.connect(createfilter1, 'out_files', createfilter2, 'extra_regressors')
    wf.connect(filter1, 'out_res', createfilter2, 'realigned_file')
    wf.connect(bin_and_erode, ('out_file', selectN, 2), createfilter2, 'mask_file')

    # Filter noise components from unsmoothed data
    filter2 = MapNode(fsl.GLM(out_f_name='F.nii',
                              out_pf_name='pF.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filter_noise_nosmooth')
    wf.connect(normalize_func, 'normalized_files', filter2, 'in_file')
    wf.connect(normalize_func, ('normalized_files', rename, '_unsmooth_cleaned'),
               filter2, 'out_res_name')
    wf.connect(createfilter2, 'out_files', filter2, 'design')
    wf.connect(mask, 'mask_file', filter2, 'mask')

    # Filter noise components from smoothed data
    filter3 = MapNode(fsl.GLM(out_f_name='F.nii',
                              out_pf_name='pF.nii',
                              demean=True),
                      iterfield=['in_file', 'design', 'out_res_name'],
                      name='filter_noise_smooth')
    wf.connect(smooth, ('smoothed_files', rename, '_cleaned'),
               filter3, 'out_res_name')
    wf.connect(smooth, 'smoothed_files', filter3, 'in_file')
    wf.connect(createfilter2, 'out_files', filter3, 'design')
    wf.connect(mask, 'mask_file', filter3, 'mask')

    # Bandpass filter the data
    bandpass1 = Node(Function(input_names=['files', 'lowpass_freq',
                                           'highpass_freq', 'fs'],
                              output_names=['out_files'],
                              function=bandpass_filter,
                              imports=imports),
                     name='bandpass_unsmooth')
    bandpass1.inputs.fs = 1./TR

    bandpass1.inputs.highpass_freq = highpass_freq
    bandpass1.inputs.lowpass_freq = lowpass_freq
    wf.connect(filter2, 'out_res', bandpass1, 'files')

    bandpass2 = bandpass1.clone(name='bandpass_smooth')
    wf.connect(filter3, 'out_res', bandpass2, 'files')

    bandpass = Node(Function(input_names=['in1', 'in2'],
                              output_names=['out_file'],
                              function=merge_files,
                              imports=imports),
                     name='bandpass_merge')
    wf.connect(bandpass1, 'out_files', bandpass, 'in1')
    wf.connect(bandpass2, 'out_files', bandpass, 'in2')

    # Save the relevant data into an output directory
    datasink = Node(interface=DataSink(), name="datasink")
    datasink.inputs.base_directory = sink_directory
    datasink.inputs.container = subject_id
    #datasink.inputs.substitutions = [('_target_subject_', '')]
    #datasink.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(realign, 'realignment_parameters', datasink, 'resting.qa.motion')
    wf.connect(art, 'norm_files', datasink, 'resting.qa.art.@norm')
    wf.connect(art, 'intensity_files', datasink, 'resting.qa.art.@intensity')
    wf.connect(art, 'outlier_files', datasink, 'resting.qa.art.@outlier_files')
    wf.connect(smooth, 'smoothed_files', datasink, 'resting.timeseries.fullpass')
    wf.connect(bin_and_erode, 'out_file', datasink, 'resting.mask_files')
    wf.connect(mask, 'mask_file', datasink, 'resting.mask_files.@brainmask')
    wf.connect(filter1, 'out_f', datasink, 'resting.qa.compmaps.@mc_F')
    wf.connect(filter1, 'out_pf', datasink, 'resting.qa.compmaps.@mc_pF')
    wf.connect(filter2, 'out_f', datasink, 'resting.qa.compmaps')
    wf.connect(filter2, 'out_pf', datasink, 'resting.qa.compmaps.@p')
    wf.connect(filter3, 'out_f', datasink, 'resting.qa.compmaps.@sF')
    wf.connect(filter3, 'out_pf', datasink, 'resting.qa.compmaps.@sp')
    wf.connect(bandpass, 'out_file', datasink, 'resting.timeseries.bandpassed')
    wf.connect(createfilter1, 'out_files',
               datasink, 'resting.regress.@regressors')
    wf.connect(createfilter2, 'out_files',
               datasink, 'resting.regress.@compcorr')
    return wf
Ejemplo n.º 7
0
def create_workflow(files,
                    subject_id,
                    n_vol=0,
                    despike=True,
                    TR=None,
                    slice_times=None,
                    slice_thickness=None,
                    fieldmap_images=[],
                    norm_threshold=1,
                    num_components=6,
                    vol_fwhm=None,
                    surf_fwhm=None,
                    lowpass_freq=-1,
                    highpass_freq=-1,
                    sink_directory=os.getcwd(),
                    FM_TEdiff=2.46,
                    FM_sigma=2,
                    FM_echo_spacing=.7,
                    target_subject=['fsaverage3', 'fsaverage4'],
                    name='resting'):

    wf = Workflow(name=name)

    # Skip starting volumes
    remove_vol = MapNode(fsl.ExtractROI(t_min=n_vol, t_size=-1),
                         iterfield=['in_file'],
                         name="remove_volumes")
    remove_vol.inputs.in_file = files

    # Run AFNI's despike. This is always run, however, whether this is fed to
    # realign depends on the input configuration
    despiker = MapNode(afni.Despike(outputtype='NIFTI_GZ'),
                       iterfield=['in_file'],
                       name='despike')
    #despiker.plugin_args = {'qsub_args': '-l nodes=1:ppn='}

    wf.connect(remove_vol, 'roi_file', despiker, 'in_file')

    # Run Nipy joint slice timing and realignment algorithm
    realign = Node(nipy.SpaceTimeRealigner(), name='realign')
    realign.inputs.tr = TR
    realign.inputs.slice_times = slice_times
    realign.inputs.slice_info = 2

    if despike:
        wf.connect(despiker, 'out_file', realign, 'in_file')
    else:
        wf.connect(remove_vol, 'roi_file', realign, 'in_file')

    # Comute TSNR on realigned data regressing polynomials upto order 2
    tsnr = MapNode(TSNR(regress_poly=2), iterfield=['in_file'], name='tsnr')
    wf.connect(realign, 'out_file', tsnr, 'in_file')

    # Compute the median image across runs
    calc_median = Node(Function(input_names=['in_files'],
                                output_names=['median_file'],
                                function=median,
                                imports=imports),
                       name='median')
    wf.connect(tsnr, 'detrended_file', calc_median, 'in_files')

    # Coregister the median to the surface
    register = Node(freesurfer.BBRegister(),
                    name='bbregister')
    register.inputs.subject_id = subject_id
    register.inputs.init = 'fsl'
    register.inputs.contrast_type = 't2'
    register.inputs.out_fsl_file = True
    register.inputs.epi_mask = True

    # Compute fieldmaps and unwarp using them
    if fieldmap_images:
        fieldmap = Node(interface=EPIDeWarp(), name='fieldmap_unwarp')
        fieldmap.inputs.tediff = FM_TEdiff
        fieldmap.inputs.esp = FM_echo_spacing
        fieldmap.inputs.sigma = FM_sigma
        fieldmap.inputs.mag_file = fieldmap_images[0]
        fieldmap.inputs.dph_file = fieldmap_images[1]
        wf.connect(calc_median, 'median_file', fieldmap, 'exf_file')

        dewarper = MapNode(interface=fsl.FUGUE(), iterfield=['in_file'],
                           name='dewarper')
        wf.connect(tsnr, 'detrended_file', dewarper, 'in_file')
        wf.connect(fieldmap, 'exf_mask', dewarper, 'mask_file')
        wf.connect(fieldmap, 'vsm_file', dewarper, 'shift_in_file')
        wf.connect(fieldmap, 'exfdw', register, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', register, 'source_file')

    # Get the subject's freesurfer source directory
    fssource = Node(FreeSurferSource(),
                    name='fssource')
    fssource.inputs.subject_id = subject_id
    fssource.inputs.subjects_dir = os.environ['SUBJECTS_DIR']

    # Extract wm+csf, brain masks by eroding freesurfer lables and then
    # transform the masks into the space of the median
    wmcsf = Node(freesurfer.Binarize(), name='wmcsfmask')
    mask = wmcsf.clone('anatmask')
    wmcsftransform = Node(freesurfer.ApplyVolTransform(inverse=True,
                                                       interp='nearest'),
                          name='wmcsftransform')
    wmcsftransform.inputs.subjects_dir = os.environ['SUBJECTS_DIR']
    wmcsf.inputs.wm_ven_csf = True
    wmcsf.inputs.match = [4, 5, 14, 15, 24, 31, 43, 44, 63]
    wmcsf.inputs.binary_file = 'wmcsf.nii.gz'
    wmcsf.inputs.erode = int(np.ceil(slice_thickness))
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), wmcsf, 'in_file')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', wmcsftransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', wmcsftransform, 'source_file')
    wf.connect(register, 'out_reg_file', wmcsftransform, 'reg_file')
    wf.connect(wmcsf, 'binary_file', wmcsftransform, 'target_file')

    mask.inputs.binary_file = 'mask.nii.gz'
    mask.inputs.dilate = int(np.ceil(slice_thickness)) + 1
    mask.inputs.erode = int(np.ceil(slice_thickness))
    mask.inputs.min = 0.5
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg), mask, 'in_file')
    masktransform = wmcsftransform.clone("masktransform")
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', masktransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', masktransform, 'source_file')
    wf.connect(register, 'out_reg_file', masktransform, 'reg_file')
    wf.connect(mask, 'binary_file', masktransform, 'target_file')

    # Compute Art outliers
    art = Node(interface=ArtifactDetect(use_differences=[True, False],
                                        use_norm=True,
                                        norm_threshold=norm_threshold,
                                        zintensity_threshold=3,
                                        parameter_source='NiPy',
                                        bound_by_brainmask=True,
                                        save_plot=False,
                                        mask_type='file'),
               name="art")
    if fieldmap_images:
        wf.connect(dewarper, 'unwarped_file', art, 'realigned_files')
    else:
        wf.connect(tsnr, 'detrended_file', art, 'realigned_files')
    wf.connect(realign, 'par_file',
               art, 'realignment_parameters')
    wf.connect(masktransform, 'transformed_file', art, 'mask_file')

    # Compute motion regressors
    motreg = Node(Function(input_names=['motion_params', 'order',
                                        'derivatives'],
                           output_names=['out_files'],
                           function=motion_regressors,
                           imports=imports),
                  name='getmotionregress')
    wf.connect(realign, 'par_file', motreg, 'motion_params')

    # Create a filter to remove motion and art confounds
    createfilter1 = Node(Function(input_names=['motion_params', 'comp_norm',
                                               'outliers'],
                                  output_names=['out_files'],
                                  function=build_filter1,
                                  imports=imports),
                         name='makemotionbasedfilter')
    wf.connect(motreg, 'out_files', createfilter1, 'motion_params')
    wf.connect(art, 'norm_files', createfilter1, 'comp_norm')
    wf.connect(art, 'outlier_files', createfilter1, 'outliers')

    # Filter the motion and art confounds
    filter1 = MapNode(fsl.GLM(out_res_name='timeseries.nii.gz',
                              demean=True),
                      iterfield=['in_file', 'design'],
                      name='filtermotion')
    if fieldmap_images:
        wf.connect(dewarper, 'unwarped_file', filter1, 'in_file')
    else:
        wf.connect(tsnr, 'detrended_file', filter1, 'in_file')
    wf.connect(createfilter1, 'out_files', filter1, 'design')
    wf.connect(masktransform, 'transformed_file', filter1, 'mask')

    # Create a filter to remove noise components based on white matter and CSF
    createfilter2 = MapNode(Function(input_names=['realigned_file', 'mask_file',
                                                  'num_components'],
                                     output_names=['out_files'],
                                     function=extract_noise_components,
                                     imports=imports),
                            iterfield=['realigned_file'],
                            name='makecompcorrfilter')
    createfilter2.inputs.num_components = num_components
    wf.connect(filter1, 'out_res', createfilter2, 'realigned_file')
    wf.connect(masktransform, 'transformed_file', createfilter2, 'mask_file')

    # Filter noise components
    filter2 = MapNode(fsl.GLM(out_res_name='timeseries_cleaned.nii.gz',
                              demean=True),
                      iterfield=['in_file', 'design'],
                      name='filtercompcorr')
    wf.connect(filter1, 'out_res', filter2, 'in_file')
    wf.connect(createfilter2, 'out_files', filter2, 'design')
    wf.connect(masktransform, 'transformed_file', filter2, 'mask')

    # Smoothing using surface and volume smoothing
    smooth = MapNode(freesurfer.Smooth(),
                     iterfield=['in_file'],
                     name='smooth')
    smooth.inputs.proj_frac_avg = (0.1, 0.9, 0.1)
    if surf_fwhm is None:
        surf_fwhm = 5 * slice_thickness
    smooth.inputs.surface_fwhm = surf_fwhm
    if vol_fwhm is None:
        vol_fwhm = 2 * slice_thickness
    smooth.inputs.vol_fwhm = vol_fwhm
    wf.connect(filter2, 'out_res',  smooth, 'in_file')
    wf.connect(register, 'out_reg_file', smooth, 'reg_file')

    # Bandpass filter the data
    bandpass = MapNode(fsl.TemporalFilter(),
                       iterfield=['in_file'],
                       name='bandpassfilter')
    if highpass_freq < 0:
            bandpass.inputs.highpass_sigma = -1
    else:
            bandpass.inputs.highpass_sigma = 1. / (2 * TR * highpass_freq)
    if lowpass_freq < 0:
            bandpass.inputs.lowpass_sigma = -1
    else:
            bandpass.inputs.lowpass_sigma = 1. / (2 * TR * lowpass_freq)
    wf.connect(smooth, 'smoothed_file', bandpass, 'in_file')

    # Convert aparc to subject functional space
    aparctransform = wmcsftransform.clone("aparctransform")
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', aparctransform, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', aparctransform, 'source_file')
    wf.connect(register, 'out_reg_file', aparctransform, 'reg_file')
    wf.connect(fssource, ('aparc_aseg', get_aparc_aseg),
               aparctransform, 'target_file')

    # Sample the average time series in aparc ROIs
    sampleaparc = MapNode(freesurfer.SegStats(avgwf_txt_file=True,
                                              default_color_table=True),
                          iterfield=['in_file'],
                          name='aparc_ts')
    sampleaparc.inputs.segment_id = ([8] + range(10, 14) + [17, 18, 26, 47] +
                                     range(49, 55) + [58] + range(1001, 1036) +
                                     range(2001, 2036))

    wf.connect(aparctransform, 'transformed_file',
               sampleaparc, 'segmentation_file')
    wf.connect(bandpass, 'out_file', sampleaparc, 'in_file')

    # Sample the time series onto the surface of the target surface. Performs
    # sampling into left and right hemisphere
    target = Node(IdentityInterface(fields=['target_subject']), name='target')
    target.iterables = ('target_subject', filename_to_list(target_subject))

    samplerlh = MapNode(freesurfer.SampleToSurface(),
                        iterfield=['source_file'],
                        name='sampler_lh')
    samplerlh.inputs.sampling_method = "average"
    samplerlh.inputs.sampling_range = (0.1, 0.9, 0.1)
    samplerlh.inputs.sampling_units = "frac"
    samplerlh.inputs.interp_method = "trilinear"
    #samplerlh.inputs.cortex_mask = True
    samplerlh.inputs.out_type = 'niigz'
    samplerlh.inputs.subjects_dir = os.environ['SUBJECTS_DIR']

    samplerrh = samplerlh.clone('sampler_rh')

    samplerlh.inputs.hemi = 'lh'
    wf.connect(bandpass, 'out_file', samplerlh, 'source_file')
    wf.connect(register, 'out_reg_file', samplerlh, 'reg_file')
    wf.connect(target, 'target_subject', samplerlh, 'target_subject')

    samplerrh.set_input('hemi', 'rh')
    wf.connect(bandpass, 'out_file', samplerrh, 'source_file')
    wf.connect(register, 'out_reg_file', samplerrh, 'reg_file')
    wf.connect(target, 'target_subject', samplerrh, 'target_subject')

    # Combine left and right hemisphere to text file
    combiner = MapNode(Function(input_names=['left', 'right'],
                                output_names=['out_file'],
                                function=combine_hemi,
                                imports=imports),
                       iterfield=['left', 'right'],
                       name="combiner")
    wf.connect(samplerlh, 'out_file', combiner, 'left')
    wf.connect(samplerrh, 'out_file', combiner, 'right')

    # Compute registration between the subject's structural and MNI template
    # This is currently set to perform a very quick registration. However, the
    # registration can be made significantly more accurate for cortical
    # structures by increasing the number of iterations
    # All parameters are set using the example from:
    # https://github.com/stnava/ANTs/blob/master/Scripts/newAntsExample.sh
    reg = Node(ants.Registration(), name='antsRegister')
    reg.inputs.output_transform_prefix = "output_"
    reg.inputs.transforms = ['Translation', 'Rigid', 'Affine', 'SyN']
    reg.inputs.transform_parameters = [(0.1,), (0.1,), (0.1,), (0.2, 3.0, 0.0)]
    # reg.inputs.number_of_iterations = ([[10000, 111110, 11110]]*3 +
    #                                    [[100, 50, 30]])
    reg.inputs.number_of_iterations = [[100, 100, 100]] * 3 + [[100, 20, 10]]
    reg.inputs.dimension = 3
    reg.inputs.write_composite_transform = True
    reg.inputs.collapse_output_transforms = False
    reg.inputs.metric = ['Mattes'] * 3 + [['Mattes', 'CC']]
    reg.inputs.metric_weight = [1] * 3 + [[0.5, 0.5]]
    reg.inputs.radius_or_number_of_bins = [32] * 3 + [[32, 4]]
    reg.inputs.sampling_strategy = ['Regular'] * 3 + [[None, None]]
    reg.inputs.sampling_percentage = [0.3] * 3 + [[None, None]]
    reg.inputs.convergence_threshold = [1.e-8] * 3 + [-0.01]
    reg.inputs.convergence_window_size = [20] * 3 + [5]
    reg.inputs.smoothing_sigmas = [[4, 2, 1]] * 3 + [[1, 0.5, 0]]
    reg.inputs.sigma_units = ['vox'] * 4
    reg.inputs.shrink_factors = [[6, 4, 2]] + [[3, 2, 1]]*2 + [[4, 2, 1]]
    reg.inputs.use_estimate_learning_rate_once = [True] * 4
    reg.inputs.use_histogram_matching = [False] * 3 + [True]
    reg.inputs.output_warped_image = 'output_warped_image.nii.gz'
    reg.inputs.fixed_image = \
        os.path.abspath('OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz')
    reg.inputs.num_threads = 4
    reg.plugin_args = {'qsub_args': '-l nodes=1:ppn=4'}

    # Convert T1.mgz to nifti for using with ANTS
    convert = Node(freesurfer.MRIConvert(out_type='niigz'), name='convert2nii')
    wf.connect(fssource, 'T1', convert, 'in_file')

    # Mask the T1.mgz file with the brain mask computed earlier
    maskT1 = Node(fsl.BinaryMaths(operation='mul'), name='maskT1')
    wf.connect(mask, 'binary_file', maskT1, 'operand_file')
    wf.connect(convert, 'out_file', maskT1, 'in_file')
    wf.connect(maskT1, 'out_file', reg, 'moving_image')

    # Convert the BBRegister transformation to ANTS ITK format
    convert2itk = MapNode(C3dAffineTool(),
                          iterfield=['transform_file', 'source_file'],
                          name='convert2itk')
    convert2itk.inputs.fsl2ras = True
    convert2itk.inputs.itk_transform = True
    wf.connect(register, 'out_fsl_file', convert2itk, 'transform_file')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', convert2itk, 'source_file')
    else:
        wf.connect(calc_median, 'median_file', convert2itk, 'source_file')
    wf.connect(convert, 'out_file', convert2itk, 'reference_file')

    # Concatenate the affine and ants transforms into a list
    pickfirst = lambda x: x[0]
    merge = MapNode(Merge(2), iterfield=['in2'], name='mergexfm')
    wf.connect(convert2itk, 'itk_transform', merge, 'in2')
    wf.connect(reg, ('composite_transform', pickfirst), merge, 'in1')

    # Apply the combined transform to the time series file
    sample2mni = MapNode(ants.ApplyTransforms(),
                         iterfield=['input_image', 'transforms'],
                         name='sample2mni')
    sample2mni.inputs.input_image_type = 3
    sample2mni.inputs.interpolation = 'BSpline'
    sample2mni.inputs.invert_transform_flags = [False, False]
    sample2mni.inputs.reference_image = \
        os.path.abspath('OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz')
    sample2mni.inputs.terminal_output = 'file'
    wf.connect(bandpass, 'out_file', sample2mni, 'input_image')
    wf.connect(merge, 'out', sample2mni, 'transforms')

    # Sample the time series file for each subcortical roi
    ts2txt = MapNode(Function(input_names=['timeseries_file', 'label_file',
                                           'indices'],
                              output_names=['out_file'],
                              function=extract_subrois,
                              imports=imports),
                     iterfield=['timeseries_file'],
                     name='getsubcortts')
    ts2txt.inputs.indices = [8] + range(10, 14) + [17, 18, 26, 47] +\
                            range(49, 55) + [58]
    ts2txt.inputs.label_file = \
        os.path.abspath(('OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152_'
                         '2mm.nii.gz'))
    wf.connect(sample2mni, 'output_image', ts2txt, 'timeseries_file')

    # Save the relevant data into an output directory
    datasink = Node(interface=DataSink(), name="datasink")
    datasink.inputs.base_directory = sink_directory
    datasink.inputs.container = subject_id
    datasink.inputs.substitutions = [('_target_subject_', '')]
    datasink.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(despiker, 'out_file', datasink, 'resting.qa.despike')
    wf.connect(realign, 'par_file', datasink, 'resting.qa.motion')
    wf.connect(tsnr, 'tsnr_file', datasink, 'resting.qa.tsnr')
    wf.connect(tsnr, 'mean_file', datasink, 'resting.qa.tsnr.@mean')
    wf.connect(tsnr, 'stddev_file', datasink, 'resting.qa.@tsnr_stddev')
    if fieldmap_images:
        wf.connect(fieldmap, 'exf_mask', datasink, 'resting.reference')
    else:
        wf.connect(calc_median, 'median_file', datasink, 'resting.reference')
    wf.connect(art, 'norm_files', datasink, 'resting.qa.art.@norm')
    wf.connect(art, 'intensity_files', datasink, 'resting.qa.art.@intensity')
    wf.connect(art, 'outlier_files', datasink, 'resting.qa.art.@outlier_files')
    wf.connect(mask, 'binary_file', datasink, 'resting.mask')
    wf.connect(masktransform, 'transformed_file',
               datasink, 'resting.mask.@transformed_file')
    wf.connect(register, 'out_reg_file', datasink, 'resting.registration.bbreg')
    wf.connect(reg, ('composite_transform', pickfirst),
               datasink, 'resting.registration.ants')
    wf.connect(register, 'min_cost_file',
               datasink, 'resting.qa.bbreg.@mincost')
    wf.connect(smooth, 'smoothed_file', datasink, 'resting.timeseries.fullpass')
    wf.connect(bandpass, 'out_file', datasink, 'resting.timeseries.bandpassed')
    wf.connect(sample2mni, 'output_image', datasink, 'resting.timeseries.mni')
    wf.connect(createfilter1, 'out_files',
               datasink, 'resting.regress.@regressors')
    wf.connect(createfilter2, 'out_files',
               datasink, 'resting.regress.@compcorr')
    wf.connect(sampleaparc, 'summary_file',
               datasink, 'resting.parcellations.aparc')
    wf.connect(sampleaparc, 'avgwf_txt_file',
               datasink, 'resting.parcellations.aparc.@avgwf')
    wf.connect(ts2txt, 'out_file',
               datasink, 'resting.parcellations.grayo.@subcortical')
    datasink2 = Node(interface=DataSink(), name="datasink2")
    datasink2.inputs.base_directory = sink_directory
    datasink2.inputs.container = subject_id
    datasink2.inputs.substitutions = [('_target_subject_', '')]
    datasink2.inputs.regexp_substitutions = (r'(/_.*(\d+/))', r'/run\2')
    wf.connect(combiner, 'out_file',
               datasink2, 'resting.parcellations.grayo.@surface')
    return wf
Ejemplo n.º 8
0
bbregNode.inputs.out_fsl_file = True
bbregNode.inputs.args = "--tol1d 1e-3"
#bbregNode.inputs.subject_id = reconallFolderName


# ### Surface2Vol

# Transform Left Hemisphere
surf2volNode_lh = Node(freesurfer.utils.Surface2VolTransform(), name = 'surf2vol_lh')
surf2volNode_lh.inputs.hemi = 'lh'
surf2volNode_lh.inputs.mkmask = True
#surf2volNode_lh.inputs.subject_id = reconallFolderName
surf2volNode_lh.inputs.vertexvol_file = 'test'

# Transform right hemisphere
surf2volNode_rh = surf2volNode_lh.clone('surf2vol_rh')
surf2volNode_rh.inputs.hemi = 'rh'

# Merge the hemispheres
mergeHemisNode = Node(fsl.BinaryMaths(), name = 'mergeHemis')
mergeHemisNode.inputs.operation = 'add'
mergeHemisNode.inputs.output_type = 'NIFTI_GZ'


# ### Registration

# Rotate high-res (1mm) WM-border to match dwi data w/o resampling
applyReg_anat2diff_1mm = Node(freesurfer.ApplyVolTransform(), name = 'wmoutline2diff_1mm')
applyReg_anat2diff_1mm.inputs.inverse = True
applyReg_anat2diff_1mm.inputs.interp = 'nearest'
applyReg_anat2diff_1mm.inputs.no_resample = True
Ejemplo n.º 9
0
bbregNode.inputs.subject_id = reconallFolderName

# ### Surface2Vol

# In[ ]:

# Transform Left Hemisphere
lhWhiteFilename = 'lh_white.nii.gz'
surf2volNode_lh = Node(freesurfer.utils.Surface2VolTransform(),
                       name='surf2vol_lh')
surf2volNode_lh.inputs.hemi = 'lh'
surf2volNode_lh.inputs.mkmask = True
surf2volNode_lh.inputs.subject_id = reconallFolderName

# Transform right hemisphere
surf2volNode_rh = surf2volNode_lh.clone('surf2vol_rh')
surf2volNode_rh.inputs.hemi = 'rh'

# Merge the hemispheres
mergeHemisNode = Node(fsl.BinaryMaths(), name='mergeHemis')
mergeHemisNode.inputs.operation = 'add'
mergeHemisNode.inputs.output_type = 'NIFTI_GZ'

# ### Registration

# In[ ]:

# Rotate high-res (1mm) WM-border to match dwi data w/o resampling
applyReg_anat2diff_1mm = Node(freesurfer.ApplyVolTransform(),
                              name='wmoutline2diff_1mm')
applyReg_anat2diff_1mm.inputs.inverse = True
Ejemplo n.º 10
0
def group_onesample_openfmri(dataset_dir,
                             model_id=None,
                             task_id=None,
                             l1output_dir=None,
                             out_dir=None,
                             no_reversal=False):

    wk = Workflow(name='one_sample')
    wk.base_dir = os.path.abspath(work_dir)

    info = Node(
        util.IdentityInterface(fields=['model_id', 'task_id', 'dataset_dir']),
        name='infosource')
    info.inputs.model_id = model_id
    info.inputs.task_id = task_id
    info.inputs.dataset_dir = dataset_dir

    num_copes = contrasts_num(model_id, task_id, dataset_dir)

    dg = Node(DataGrabber(infields=['model_id', 'task_id', 'cope_id'],
                          outfields=['copes', 'varcopes']),
              name='grabber')
    dg.inputs.template = os.path.join(
        l1output_dir, 'model%03d/task%03d/*/%scopes/mni/%scope%02d.nii.gz')
    dg.inputs.template_args['copes'] = [[
        'model_id', 'task_id', '', '', 'cope_id'
    ]]
    dg.inputs.template_args['varcopes'] = [[
        'model_id', 'task_id', 'var', 'var', 'cope_id'
    ]]
    dg.iterables = ('cope_id', num_copes)

    dg.inputs.sort_filelist = True

    wk.connect(info, 'model_id', dg, 'model_id')
    wk.connect(info, 'task_id', dg, 'task_id')

    model = Node(L2Model(), name='l2model')

    wk.connect(dg, ('copes', get_len), model, 'num_copes')

    mergecopes = Node(Merge(dimension='t'), name='merge_copes')
    wk.connect(dg, 'copes', mergecopes, 'in_files')

    mergevarcopes = Node(Merge(dimension='t'), name='merge_varcopes')
    wk.connect(dg, 'varcopes', mergevarcopes, 'in_files')

    mask_file = fsl.Info.standard_image('MNI152_T1_2mm_brain_mask.nii.gz')
    flame = Node(FLAMEO(), name='flameo')
    flame.inputs.mask_file = mask_file
    flame.inputs.run_mode = 'flame1'

    wk.connect(model, 'design_mat', flame, 'design_file')
    wk.connect(model, 'design_con', flame, 't_con_file')
    wk.connect(mergecopes, 'merged_file', flame, 'cope_file')
    wk.connect(mergevarcopes, 'merged_file', flame, 'var_cope_file')
    wk.connect(model, 'design_grp', flame, 'cov_split_file')

    smoothest = Node(SmoothEstimate(), name='smooth_estimate')
    wk.connect(flame, 'zstats', smoothest, 'zstat_file')
    smoothest.inputs.mask_file = mask_file

    cluster = Node(Cluster(), name='cluster')
    wk.connect(smoothest, 'dlh', cluster, 'dlh')
    wk.connect(smoothest, 'volume', cluster, 'volume')
    cluster.inputs.connectivity = 26
    cluster.inputs.threshold = 2.3
    cluster.inputs.pthreshold = 0.05
    cluster.inputs.out_threshold_file = True
    cluster.inputs.out_index_file = True
    cluster.inputs.out_localmax_txt_file = True

    wk.connect(flame, 'zstats', cluster, 'in_file')

    ztopval = Node(ImageMaths(op_string='-ztop', suffix='_pval'),
                   name='z2pval')
    wk.connect(flame, 'zstats', ztopval, 'in_file')

    sinker = Node(DataSink(), name='sinker')
    sinker.inputs.base_directory = os.path.abspath(out_dir)
    sinker.inputs.substitutions = [('_cope_id', 'contrast'),
                                   ('_maths__', '_reversed_')]

    wk.connect(flame, 'zstats', sinker, 'stats')
    wk.connect(cluster, 'threshold_file', sinker, 'stats.@thr')
    wk.connect(cluster, 'index_file', sinker, 'stats.@index')
    wk.connect(cluster, 'localmax_txt_file', sinker, 'stats.@localmax')

    if no_reversal == False:
        zstats_reverse = Node(BinaryMaths(), name='zstats_reverse')
        zstats_reverse.inputs.operation = 'mul'
        zstats_reverse.inputs.operand_value = -1
        wk.connect(flame, 'zstats', zstats_reverse, 'in_file')

        cluster2 = cluster.clone(name='cluster2')
        wk.connect(smoothest, 'dlh', cluster2, 'dlh')
        wk.connect(smoothest, 'volume', cluster2, 'volume')
        wk.connect(zstats_reverse, 'out_file', cluster2, 'in_file')

        ztopval2 = ztopval.clone(name='ztopval2')
        wk.connect(zstats_reverse, 'out_file', ztopval2, 'in_file')

        wk.connect(zstats_reverse, 'out_file', sinker, 'stats.@neg')
        wk.connect(cluster2, 'threshold_file', sinker, 'stats.@neg_thr')
        wk.connect(cluster2, 'index_file', sinker, 'stats.@neg_index')
        wk.connect(cluster2, 'localmax_txt_file', sinker,
                   'stats.@neg_localmax')

    return wk
Ejemplo n.º 11
0
bbregNode.inputs.subject_id = reconallFolderName


# ### Surface2Vol

# In[ ]:

# Transform Left Hemisphere
lhWhiteFilename = "lh_white.nii.gz"
surf2volNode_lh = Node(freesurfer.utils.Surface2VolTransform(), name="surf2vol_lh")
surf2volNode_lh.inputs.hemi = "lh"
surf2volNode_lh.inputs.mkmask = True
surf2volNode_lh.inputs.subject_id = reconallFolderName

# Transform right hemisphere
surf2volNode_rh = surf2volNode_lh.clone("surf2vol_rh")
surf2volNode_rh.inputs.hemi = "rh"

# Merge the hemispheres
mergeHemisNode = Node(fsl.BinaryMaths(), name="mergeHemis")
mergeHemisNode.inputs.operation = "add"
mergeHemisNode.inputs.output_type = "NIFTI_GZ"


# ### Registration

# In[ ]:

# Rotate high-res (1mm) WM-border to match dwi data w/o resampling
applyReg_anat2diff_1mm = Node(freesurfer.ApplyVolTransform(), name="wmoutline2diff_1mm")
applyReg_anat2diff_1mm.inputs.inverse = True
Ejemplo n.º 12
0
# reconallNode.plugin_args = {'overwrite': True, 'oarsub_args': '-l nodes=1,walltime=16:00:00'}

# Convert the T1 mgz image to nifti format for later usage
# mriConverter = Node(freesurfer.preprocess.MRIConvert(), name = 'convertAparcAseg')
# mriConverter.inputs.out_type = 'niigz'
# mriConverter.inputs.out_orientation = 'RAS'
mriConverter = Node(Function(input_names=['in_file', 'out_file'],
                             output_names=['out_file'],
                             function=mri_convert_bm),
                    name='convertAparcAseg')

# Convert the Brainmask file
# brainmaskConv = Node(freesurfer.preprocess.MRIConvert(), name = 'convertBrainmask')
# brainmaskConv.inputs.out_type = 'niigz'
# brainmaskConv.inputs.out_orientation = 'RAS'
brainmaskConv = mriConverter.clone('convertBrainmask')

# ### Diffusion Data (dwMRI) preprocessing
# First extract the diffusion vectors and the pulse intensity (bvec and bval)
# Use dcm2nii for this task
dcm2niiNode = Node(Dcm2nii(), name='dcm2niiAndBvecs')
dcm2niiNode.inputs.gzip_output = True
dcm2niiNode.inputs.date_in_filename = False
dcm2niiNode.inputs.events_in_filename = False

# Extract the first image of the DTI series i.e. the b0 image
extrctB0Node = Node(Function(input_names=['dwMriFile'],
                             output_names=['b0'],
                             function=extractB0),
                    name='Extract_b0')
Ejemplo n.º 13
0
# reconallNode.plugin_args = {'overwrite': True, 'oarsub_args': '-l nodes=1,walltime=16:00:00'}

# Convert the T1 mgz image to nifti format for later usage
# mriConverter = Node(freesurfer.preprocess.MRIConvert(), name = 'convertAparcAseg')
# mriConverter.inputs.out_type = 'niigz'
# mriConverter.inputs.out_orientation = 'RAS'
mriConverter = Node(Function(input_names = ['in_file', 'out_file'],
                            output_names = ['out_file'],
                            function = mri_convert_bm),
                   name = 'convertAparcAseg')

# Convert the Brainmask file
# brainmaskConv = Node(freesurfer.preprocess.MRIConvert(), name = 'convertBrainmask')
# brainmaskConv.inputs.out_type = 'niigz'
# brainmaskConv.inputs.out_orientation = 'RAS'
brainmaskConv = mriConverter.clone('convertBrainmask')


# ### Diffusion Data (dwMRI) preprocessing
# First extract the diffusion vectors and the pulse intensity (bvec and bval)
# Use dcm2nii for this task
dcm2niiNode = Node(Dcm2nii(), name = 'dcm2niiAndBvecs')
dcm2niiNode.inputs.gzip_output = True
dcm2niiNode.inputs.date_in_filename = False
dcm2niiNode.inputs.events_in_filename = False


# Extract the first image of the DTI series i.e. the b0 image
extrctB0Node = Node(Function(input_names = ['dwMriFile'], output_names = ['b0'],
                             function = extractB0), name = 'Extract_b0')
Ejemplo n.º 14
0
dwi2tensorNode = Node(mrtrix.DWI2Tensor(), name='dwi_2_tensor')

# Fractional anisotropy (FA) map
tensor2faNode = Node(mrtrix.Tensor2FractionalAnisotropy(), name='tensor_2_FA')

# Remove noisy background by multiplying the FA Image with the binary brainmask
mrmultNode = Node(Function(input_names=['in1', 'in2', 'out_file'],
                           output_names=['out_file'],
                           function=multiplyMRTrix),
                  name='mrmult')

# Eigenvector (EV) map
tensor2vectorNode = Node(mrtrix.Tensor2Vector(), name='tensor_2_vector')

# Scale the EV map by the FA Image
scaleEvNode = mrmultNode.clone('scale_ev')

# Mask of single-fibre voxels
erodeNode = Node(mrtrix.Erode(), name='erode_wmmask')
erodeNode.inputs.number_of_passes = number_of_passes

cleanFaNode = mrmultNode.clone('multiplyFA_Mask')

thresholdFANode = Node(mrtrix.Threshold(), name='threshold_FA')
thresholdFANode.inputs.absolute_threshold_value = absolute_threshold_value

# Response function coefficient
estResponseNode = Node(mrtrix.EstimateResponseForSH(),
                       name='estimate_deconv_response')

# CSD computation