Ejemplo n.º 1
0
 def test_MRICoregRPT(self):
     """ the FLIRT report capable test """
     mri_coreg_rpt = MRICoregRPT(generate_report=True,
                                 source_file=self.moving,
                                 reference_file=self.reference,
                                 num_threads=nthreads)
     _smoke_test_report(mri_coreg_rpt, 'testMRICoreg.svg')
Ejemplo n.º 2
0
def test_MRICoregRPT(monkeypatch, reference, moving, nthreads):
    """ the FLIRT report capable test """
    def _agg(objekt, runtime):
        outputs = Bunch(out_lta_file=os.path.join(
            datadir, 'testMRICoregRPT-out_lta_file.lta'), )
        return outputs

    # Patch the _run_interface method
    monkeypatch.setattr(MRICoregRPT, '_run_interface', _run_interface_mock)
    monkeypatch.setattr(MRICoregRPT, 'aggregate_outputs', _agg)

    mri_coreg_rpt = MRICoregRPT(generate_report=True,
                                source_file=moving,
                                reference_file=reference,
                                num_threads=nthreads)
    _smoke_test_report(mri_coreg_rpt, 'testMRICoreg.svg')
Ejemplo n.º 3
0
def test_MRICoregRPT(monkeypatch, reference, moving, nthreads):
    """ the MRICoreg report capable test """
    def _agg(objekt, runtime):
        outputs = objekt.output_spec()
        outputs.out_lta_file = os.path.join(
            datadir, "testMRICoregRPT-out_lta_file.lta")
        outputs.out_report = os.path.join(runtime.cwd,
                                          objekt.inputs.out_report)
        return outputs

    # Patch the _run_interface method
    monkeypatch.setattr(MRICoregRPT, "_run_interface", _run_interface_mock)
    monkeypatch.setattr(MRICoregRPT, "aggregate_outputs", _agg)

    mri_coreg_rpt = MRICoregRPT(
        generate_report=True,
        source_file=moving,
        reference_file=reference,
        num_threads=nthreads,
    )
    _smoke_test_report(mri_coreg_rpt, "testMRICoreg.svg")
Ejemplo n.º 4
0
def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'):
    """
    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_bbreg_wf
        wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: bbreg_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_2_fsnative_reverse_transform
            FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
        t1_brain
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)
        t1_seg
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr].
Co-registration was configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
"""

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform',
            'subjects_dir',
            'subject_id',  # BBRegister
            't1_seg',
            't1_brain'
        ]),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        ['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
                         name='outputnode')

    mri_coreg = pe.Node(MRICoregRPT(dof=bold2t1w_dof,
                                    sep=[4],
                                    ftol=0.0001,
                                    linmintol=0.01,
                                    generate_report=not use_bbr),
                        name='mri_coreg',
                        n_procs=omp_nthreads,
                        mem_gb=5)

    lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat')
    # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward
    # LTA-ITK transform, but right now the translation parameters are off.
    lta2fsl_fwd = pe.Node(fs.utils.LTAConvert(out_fsl=True),
                          name='lta2fsl_fwd')
    lta2fsl_inv = pe.Node(fs.utils.LTAConvert(out_fsl=True, invert=True),
                          name='lta2fsl_inv')
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                ('subject_id', 'subject_id'),
                                ('in_file', 'source_file')]),
        # Output ITK transforms
        (inputnode, lta_concat, [('t1_2_fsnative_reverse_transform', 'in_lta2')
                                 ]),
        (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]),
        (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]),
        (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use initial registration
    if use_bbr is False:
        workflow.connect([
            (mri_coreg, outputnode, [('out_report', 'out_report')]),
            (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])
        ])
        outputnode.inputs.fallback = True

        return workflow

    bbregister = pe.Node(BBRegisterRPT(dof=bold2t1w_dof,
                                       contrast_type='t2',
                                       registered_file=True,
                                       out_lta_file=True,
                                       generate_report=True),
                         name='bbregister',
                         mem_gb=12)

    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
        (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (bbregister, outputnode, [('out_report', 'out_report')]),
            (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2),
                         run_without_submitting=True,
                         name='transforms')
    reports = pe.Node(niu.Merge(2),
                      run_without_submitting=True,
                      name='reports')

    lta_ras2ras = pe.MapNode(fs.utils.LTAConvert(out_lta=True),
                             iterfield=['in_lta'],
                             name='lta_ras2ras',
                             mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms),
                                 name='compare_transforms')

    select_transform = pe.Node(niu.Select(),
                               run_without_submitting=True,
                               name='select_transform')
    select_report = pe.Node(niu.Select(),
                            run_without_submitting=True,
                            name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, lta_concat, [('out', 'in_lta1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow