Ejemplo n.º 1
0
def init_ica_aroma_wf(template,
                      metadata,
                      mem_gb,
                      omp_nthreads,
                      name='ica_aroma_wf',
                      susan_fwhm=6.0,
                      ignore_aroma_err=False,
                      aroma_melodic_dim=-200,
                      use_fieldwarp=True):
    """
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Remove non-steady state volumes from the bold series.
    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here <http://nbviewer.jupyter.org/github/poldracklab/\
    fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_\
    aroma_confounds.ipynb>`__.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf(template='MNI152NLin2009cAsym',
                               metadata={'RepetitionTime': 1.0},
                               mem_gb=3,
                               omp_nthreads=1)

    **Parameters**

        template : str
            Spatial normalization template used as target when that
            registration step was previously calculated with
            :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf`.
            The template must be one of the MNI templates (fMRIPrep uses
            ``MNI152NLin2009cAsym`` by default).
        metadata : dict
            BIDS metadata for BOLD file
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_mni_trans_wf``)
        susan_fwhm : float
            Kernel width (FWHM in mm) for the smoothing step with
            FSL ``susan`` (default: 6.0mm)
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        aroma_melodic_dim: int
            Set the dimensionality of the MELODIC ICA decomposition.
            Negative numbers set a maximum on automatic dimensionality estimation.
            Positive numbers set an exact number of components to extract.
            (default: -200, i.e., estimate <=200 components)

    **Inputs**

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        t1_2_mni_forward_transform
            ANTs-compatible affine-and-warp transform file
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        skip_vols
            number of non steady state volumes
        bold_split
            Individual 3D BOLD volumes, not motion corrected
        bold_mask
            BOLD series mask in template space
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format
        movpar_file
            SPM-formatted motion parameters file

    **Outputs**

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied

    .. _ICA-AROMA: https://github.com/maartenmennes/ICA-AROMA

    """
    workflow = Workflow(name=name)
    workflow.__postdesc__ = """\
Automatic removal of motion artifacts using independent component analysis
[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space*
time-series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum).
Corresponding "non-aggresively" denoised runs were produced after such
smoothing.
Additionally, the "aggressive" noise-regressors were collected and placed
in the corresponding confounds file.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'itk_bold_to_t1', 't1_2_mni_forward_transform', 'name_source',
        'skip_vols', 'bold_split', 'bold_mask', 'hmc_xforms', 'fieldwarp',
        'movpar_file'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'aroma_noise_ics', 'melodic_mix',
        'nonaggr_denoised_file'
    ]),
                         name='outputnode')

    bold_mni_trans_wf = init_bold_mni_trans_wf(
        template=template,
        mem_gb=mem_gb,
        omp_nthreads=omp_nthreads,
        template_out_grid=str(
            get_template('MNI152Lin') /
            'tpl-MNI152Lin_space-MNI_res-02_T1w.nii.gz'),
        use_compression=False,
        use_fieldwarp=use_fieldwarp,
        name='bold_mni_trans_wf')
    bold_mni_trans_wf.__desc__ = None

    rm_non_steady_state = pe.Node(niu.Function(function=_remove_volumes,
                                               output_names=['bold_cut']),
                                  name='rm_nonsteady')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=_getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True,
                                  tr_sec=float(metadata['RepetitionTime']),
                                  mm_thresh=0.5,
                                  out_stats=True,
                                  dim=aroma_melodic_dim),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='nonaggr',
                                     generate_report=True,
                                     TR=metadata['RepetitionTime']),
                        name='ica_aroma')

    add_non_steady_state = pe.Node(niu.Function(function=_add_volumes,
                                                output_names=['bold_add']),
                                   name='add_nonsteady')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(ignore_aroma_err=ignore_aroma_err),
        name='ica_aroma_confound_extraction')

    ds_report_ica_aroma = pe.Node(DerivativesDataSink(suffix='ica_aroma'),
                                  name='ds_report_ica_aroma',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, bold_mni_trans_wf,
         [('name_source', 'inputnode.name_source'),
          ('bold_split', 'inputnode.bold_split'),
          ('bold_mask', 'inputnode.bold_mask'),
          ('hmc_xforms', 'inputnode.hmc_xforms'),
          ('itk_bold_to_t1', 'inputnode.itk_bold_to_t1'),
          ('t1_2_mni_forward_transform',
           'inputnode.t1_2_mni_forward_transform'),
          ('fieldwarp', 'inputnode.fieldwarp')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (inputnode, rm_non_steady_state, [('skip_vols', 'skip_vols')]),
        (bold_mni_trans_wf, rm_non_steady_state, [('outputnode.bold_mni',
                                                   'bold_file')]),
        (bold_mni_trans_wf, calc_median_val, [('outputnode.bold_mask_mni',
                                               'mask_file')]),
        (rm_non_steady_state, calc_median_val, [('bold_cut', 'in_file')]),
        (rm_non_steady_state, calc_bold_mean, [('bold_cut', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (rm_non_steady_state, smooth, [('bold_cut', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (bold_mni_trans_wf, melodic, [('outputnode.bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (bold_mni_trans_wf, ica_aroma, [('outputnode.bold_mask_mni',
                                         'report_mask'),
                                        ('outputnode.bold_mask_mni', 'mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        (inputnode, ica_aroma_confound_extraction, [('skip_vols', 'skip_vols')
                                                    ]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, add_non_steady_state, [('nonaggr_denoised_file',
                                            'bold_cut_file')]),
        (bold_mni_trans_wf, add_non_steady_state, [('outputnode.bold_mni',
                                                    'bold_file')]),
        (inputnode, add_non_steady_state, [('skip_vols', 'skip_vols')]),
        (add_non_steady_state, outputnode, [('bold_add',
                                             'nonaggr_denoised_file')]),
        (ica_aroma, ds_report_ica_aroma, [('out_report', 'in_file')]),
    ])

    return workflow
Ejemplo n.º 2
0
def init_ica_aroma_wf(name='ica_aroma_wf', ignore_aroma_err=False):
    '''
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Smooth data using SUSAN
    #. Run MELODIC outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return classified_motion_ICs and melodic_mix for user to complete
        non-aggressive denoising in T1w space

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf()

    **Parameters**

        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors

    **Inputs**

        bold_mni
            BOLD series, resampled to template space
        movpar_file
            SPM-formatted motion parameters file
        bold_mask_mni
            BOLD series mask in template space

    **Outputs**

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied
        out_report
            Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels

    .. _ICA-AROMA: https://github.com/rhr-pruim/ICA-AROMA
    '''
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold_mni', 'movpar_file', 'bold_mask_mni']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['aroma_confounds', 'out_report',
                'aroma_noise_ics', 'melodic_mix',
                'nonaggr_denoised_file']), name='outputnode')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'), name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def getusans_func(image, thresh):
        return [tuple([image, thresh])]
    getusans = pe.Node(niu.Function(function=getusans_func, output_names=['usans']),
                       name='getusans', mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=6.0), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True, no_mm=True), name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='nonaggr', generate_report=True),
                        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(ICAConfounds(ignore_aroma_err=ignore_aroma_err),
                                            name='ica_aroma_confound_extraction')

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        # Connect input nodes to complete smoothing
        (inputnode, calc_median_val, [('bold_mni', 'in_file'),
                                      ('bold_mask_mni', 'mask_file')]),
        (inputnode, calc_bold_mean, [('bold_mni', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        (inputnode, smooth, [('bold_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh), 'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('bold_mask_mni', 'report_mask'),
                                ('movpar_file', 'motion_parameters')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction, outputnode, [('aroma_confounds', 'aroma_confounds'),
                                                     ('aroma_noise_ics', 'aroma_noise_ics'),
                                                     ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, outputnode, [('out_report', 'out_report'),
                                 ('nonaggr_denoised_file', 'nonaggr_denoised_file')]),
    ])

    return workflow
Ejemplo n.º 3
0
def init_ica_aroma_wf(template, metadata, mem_gb, omp_nthreads,
                      name='ica_aroma_wf',
                      susan_fwhm=6.0,
                      ignore_aroma_err=False,
                      aroma_melodic_dim=None,
                      use_fieldwarp=True):
    """
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here <http://nbviewer.jupyter.org/github/poldracklab/\
    fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_\
    aroma_confounds.ipynb>`__.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf(template='MNI152NLin2009cAsym',
                               metadata={'RepetitionTime': 1.0},
                               mem_gb=3,
                               omp_nthreads=1)

    **Parameters**

        template : str
            Spatial normalization template used as target when that
            registration step was previously calculated with
            :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf`.
            The template must be one of the MNI templates (fMRIPrep uses
            ``MNI152NLin2009cAsym`` by default).
        metadata : dict
            BIDS metadata for BOLD file
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_mni_trans_wf``)
        susan_fwhm : float
            Kernel width (FWHM in mm) for the smoothing step with
            FSL ``susan`` (default: 6.0mm)
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        aroma_melodic_dim: int or None
            Set the dimensionality of the Melodic ICA decomposition
            If None, MELODIC automatically estimates dimensionality.


    **Inputs**

        bold_mni
            BOLD series, resampled to template space
        movpar_file
            SPM-formatted motion parameters file
        bold_mask_mni
            BOLD series mask in template space

    **Outputs**

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied

    .. _ICA-AROMA: https://github.com/rhr-pruim/ICA-AROMA
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=[
            'itk_bold_to_t1',
            't1_2_mni_forward_transform',
            'name_source',
            'bold_split',
            'bold_mask',
            'hmc_xforms',
            'fieldwarp',
            'movpar_file']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['aroma_confounds', 'aroma_noise_ics', 'melodic_mix',
                'nonaggr_denoised_file']), name='outputnode')

    bold_mni_trans_wf = init_bold_mni_trans_wf(
        template=template,
        mem_gb=mem_gb,
        omp_nthreads=omp_nthreads,
        template_out_grid=os.path.join(get_mni_icbm152_linear(),
                                       '2mm_T1.nii.gz'),
        use_compression=False,
        use_fieldwarp=use_fieldwarp,
        name='bold_mni_trans_wf'
    )

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'), name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]
    getusans = pe.Node(niu.Function(function=_getusans_func, output_names=['usans']),
                       name='getusans', mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(
        no_bet=True, tr_sec=float(metadata['RepetitionTime']), mm_thresh=0.5, out_stats=True),
        name="melodic")

    if aroma_melodic_dim is not None:
        melodic.inputs.dim = aroma_melodic_dim

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(
        denoise_type='nonaggr', generate_report=True, TR=metadata['RepetitionTime']),
        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(ICAConfounds(ignore_aroma_err=ignore_aroma_err),
                                            name='ica_aroma_confound_extraction')

    ds_report_ica_aroma = pe.Node(
        DerivativesDataSink(suffix='ica_aroma'),
        name='ds_report_ica_aroma', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, bold_mni_trans_wf, [
            ('name_source', 'inputnode.name_source'),
            ('bold_split', 'inputnode.bold_split'),
            ('bold_mask', 'inputnode.bold_mask'),
            ('hmc_xforms', 'inputnode.hmc_xforms'),
            ('itk_bold_to_t1', 'inputnode.itk_bold_to_t1'),
            ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'),
            ('fieldwarp', 'inputnode.fieldwarp')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (bold_mni_trans_wf, calc_median_val, [
            ('outputnode.bold_mni', 'in_file'),
            ('outputnode.bold_mask_mni', 'mask_file')]),
        (bold_mni_trans_wf, calc_bold_mean, [
            ('outputnode.bold_mni', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (bold_mni_trans_wf, smooth, [
            ('outputnode.bold_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh), 'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (bold_mni_trans_wf, melodic, [
            ('outputnode.bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (bold_mni_trans_wf, ica_aroma, [
            ('outputnode.bold_mask_mni', 'report_mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction, outputnode, [('aroma_confounds', 'aroma_confounds'),
                                                     ('aroma_noise_ics', 'aroma_noise_ics'),
                                                     ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, outputnode, [('nonaggr_denoised_file', 'nonaggr_denoised_file')]),
        (ica_aroma, ds_report_ica_aroma, [('out_report', 'in_file')]),
    ])

    return workflow
Ejemplo n.º 4
0
def init_ica_aroma_wf(
    mem_gb,
    metadata,
    omp_nthreads,
    aroma_melodic_dim=-200,
    err_on_aroma_warn=False,
    name='ica_aroma_wf',
    susan_fwhm=6.0,
):
    """
    Build a workflow that runs `ICA-AROMA`_.

    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Remove non-steady state volumes from the bold series.
    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here
    <http://nbviewer.jupyter.org/github/poldracklab/fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_aroma_confounds.ipynb>`__.

    .. _ICA-AROMA: https://github.com/maartenmennes/ICA-AROMA

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
            wf = init_ica_aroma_wf(
                mem_gb=3,
                metadata={'RepetitionTime': 1.0},
                omp_nthreads=1)

    Parameters
    ----------
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    name : :obj:`str`
        Name of workflow (default: ``bold_tpl_trans_wf``)
    susan_fwhm : :obj:`float`
        Kernel width (FWHM in mm) for the smoothing step with
        FSL ``susan`` (default: 6.0mm)
    err_on_aroma_warn : :obj:`bool`
        Do not fail on ICA-AROMA errors
    aroma_melodic_dim : :obj:`int`
        Set the dimensionality of the MELODIC ICA decomposition.
        Negative numbers set a maximum on automatic dimensionality estimation.
        Positive numbers set an exact number of components to extract.
        (default: -200, i.e., estimate <=200 components)

    Inputs
    ------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
    anat2std_xfm
        ANTs-compatible affine-and-warp transform file
    name_source
        BOLD series NIfTI file
        Used to recover original information lost during processing
    skip_vols
        number of non steady state volumes
    bold_split
        Individual 3D BOLD volumes, not motion corrected
    bold_mask
        BOLD series mask in template space
    hmc_xforms
        List of affine transforms aligning each volume to ``ref_image`` in ITK format
    movpar_file
        SPM-formatted motion parameters file

    Outputs
    -------
    aroma_confounds
        TSV of confounds identified as noise by ICA-AROMA
    aroma_noise_ics
        CSV of noise components identified by ICA-AROMA
    melodic_mix
        FSL MELODIC mixing matrix
    nonaggr_denoised_file
        BOLD series with non-aggressive ICA-AROMA denoising applied

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.segmentation import ICA_AROMARPT
    from niworkflows.interfaces.utility import KeySelect
    from niworkflows.interfaces.utils import TSV2JSON

    workflow = Workflow(name=name)
    workflow.__postdesc__ = """\
Automatic removal of motion artifacts using independent component analysis
[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space*
time-series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum).
Corresponding "non-aggresively" denoised runs were produced after such
smoothing.
Additionally, the "aggressive" noise-regressors were collected and placed
in the corresponding confounds file.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_std',
        'bold_mask_std',
        'movpar_file',
        'name_source',
        'skip_vols',
        'spatial_reference',
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'aroma_noise_ics', 'melodic_mix',
        'nonaggr_denoised_file', 'aroma_metadata'
    ]),
                         name='outputnode')

    # extract out to BOLD base
    select_std = pe.Node(KeySelect(fields=['bold_mask_std', 'bold_std']),
                         name='select_std',
                         run_without_submitting=True)
    select_std.inputs.key = 'MNI152NLin6Asym_res-2'

    rm_non_steady_state = pe.Node(niu.Function(function=_remove_volumes,
                                               output_names=['bold_cut']),
                                  name='rm_nonsteady')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=_getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True,
                                  tr_sec=float(metadata['RepetitionTime']),
                                  mm_thresh=0.5,
                                  out_stats=True,
                                  dim=aroma_melodic_dim),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='nonaggr',
                                     generate_report=True,
                                     TR=metadata['RepetitionTime'],
                                     args='-np'),
                        name='ica_aroma')

    add_non_steady_state = pe.Node(niu.Function(function=_add_volumes,
                                                output_names=['bold_add']),
                                   name='add_nonsteady')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(err_on_aroma_warn=err_on_aroma_warn),
        name='ica_aroma_confound_extraction')

    ica_aroma_metadata_fmt = pe.Node(TSV2JSON(index_column='IC',
                                              output=None,
                                              enforce_case=True,
                                              additional_metadata={
                                                  'Method': {
                                                      'Name':
                                                      'ICA-AROMA',
                                                      'Version':
                                                      getenv(
                                                          'AROMA_VERSION',
                                                          'n/a')
                                                  }
                                              }),
                                     name='ica_aroma_metadata_fmt')

    ds_report_ica_aroma = pe.Node(DerivativesDataSink(
        desc='aroma', datatype="figures", dismiss_entities=("echo", )),
                                  name='ds_report_ica_aroma',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, select_std, [('spatial_reference', 'keys'),
                                 ('bold_std', 'bold_std'),
                                 ('bold_mask_std', 'bold_mask_std')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (inputnode, rm_non_steady_state, [('skip_vols', 'skip_vols')]),
        (select_std, rm_non_steady_state, [('bold_std', 'bold_file')]),
        (select_std, calc_median_val, [('bold_mask_std', 'mask_file')]),
        (rm_non_steady_state, calc_median_val, [('bold_cut', 'in_file')]),
        (rm_non_steady_state, calc_bold_mean, [('bold_cut', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (rm_non_steady_state, smooth, [('bold_cut', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (select_std, melodic, [('bold_mask_std', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (select_std, ica_aroma, [('bold_mask_std', 'report_mask'),
                                 ('bold_mask_std', 'mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        (inputnode, ica_aroma_confound_extraction, [('skip_vols', 'skip_vols')
                                                    ]),
        (ica_aroma_confound_extraction, ica_aroma_metadata_fmt,
         [('aroma_metadata', 'in_file')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        (ica_aroma_metadata_fmt, outputnode, [('output', 'aroma_metadata')]),
        (ica_aroma, add_non_steady_state, [('nonaggr_denoised_file',
                                            'bold_cut_file')]),
        (select_std, add_non_steady_state, [('bold_std', 'bold_file')]),
        (inputnode, add_non_steady_state, [('skip_vols', 'skip_vols')]),
        (add_non_steady_state, outputnode, [('bold_add',
                                             'nonaggr_denoised_file')]),
        (ica_aroma, ds_report_ica_aroma, [('out_report', 'in_file')]),
    ])

    return workflow
Ejemplo n.º 5
0
def init_ica_aroma_wf(
    dt,
    aroma_melodic_dim=-200,
    err_on_aroma_warn=False,
    susan_fwhm=6.0,
    name='ica_aroma_wf',
):
    """
    Build a workflow that runs `ICA-AROMA`_.

    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Remove non-steady state volumes from the bold series.
    #. Smooth data using FSL `susan`, with a kernel width FWHM=6.0mm.
    #. Run FSL `melodic` outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return ``classified_motion_ICs`` and ``melodic_mix`` for user to complete
       non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
       (columns named ``AROMAAggrCompXX``)

    There is a current discussion on whether other confounds should be extracted
    before or after denoising `here
    <http://nbviewer.jupyter.org/github/nipreps/fmriprep-notebooks/blob/922e436429b879271fa13e76767a6e73443e74d9/issue-817_aroma_confounds.ipynb>`__.

    .. _ICA-AROMA: https://github.com/maartenmennes/ICA-AROMA

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from ecp.workflows.confounds import init_ica_aroma_wf
            wf = init_ica_aroma_wf(
                dt=1.0)

    Parameters
    ----------
    dt : :obj:`float`
        bold repetition time
    aroma_melodic_dim : :obj:`int`
        Set the dimensionality of the MELODIC ICA decomposition.
        Negative numbers set a maximum on automatic dimensionality estimation.
        Positive numbers set an exact number of components to extract.
        (default: -200, i.e., estimate <=200 components)
    err_on_aroma_warn : :obj:`bool`
        Do not fail on ICA-AROMA errors
    susan_fwhm : :obj:`float`
        Kernel width (FWHM in mm) for the smoothing step with
        FSL ``susan`` (default: 6.0mm)
    name : :obj:`str`
        Name of workflow (default: ``ica_aroma_wf``)

    Inputs
    ------
    bold_std
        BOLD series NIfTI file in MNI152NLin6Asym space
    bold_mask_std
        BOLD mask for MNI152NLin6Asym space
    movpar_file
        movement parameter file
    skip_vols
        number of non steady state volumes
        
    Outputs
    -------
    aroma_confounds
        TSV of confounds identified as noise by ICA-AROMA
    aroma_noise_ics
        CSV of noise components identified by ICA-AROMA
    melodic_mix
        FSL MELODIC mixing matrix
    aroma_metatdata
        metadata
    out_report
        aroma out report

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.segmentation import ICA_AROMARPT
    from niworkflows.interfaces.utility import KeySelect
    from niworkflows.interfaces.utils import TSV2JSON

    workflow = Workflow(name=name)
    workflow.__postdesc__ = """\
Automatic removal of motion artifacts using independent component analysis
[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space*
time-series after removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum).
The "aggressive" noise-regressors were collected and placed
in the corresponding confounds file.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_std',
        'bold_mask_std',
        'movpar_file',
        'skip_vols',
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'aroma_noise_ics', 'melodic_mix', 'aroma_metadata',
        'out_report'
    ]),
                         name='outputnode')

    # extract out to BOLD base
    rm_non_steady_state = pe.Node(Trim(), name='rm_nonsteady')
    trim_movement = pe.Node(TrimMovement(), name='trim_movement')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=_getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=susan_fwhm), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True,
                                  tr_sec=dt,
                                  mm_thresh=0.5,
                                  out_stats=True,
                                  dim=aroma_melodic_dim),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='no',
                                     generate_report=True,
                                     TR=dt,
                                     args='-np'),
                        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(err_on_aroma_warn=err_on_aroma_warn),
        name='ica_aroma_confound_extraction')

    ica_aroma_metadata_fmt = pe.Node(TSV2JSON(index_column='IC',
                                              output=None,
                                              enforce_case=True,
                                              additional_metadata={
                                                  'Method': {
                                                      'Name':
                                                      'ICA-AROMA',
                                                      'Version':
                                                      getenv(
                                                          'AROMA_VERSION',
                                                          'n/a')
                                                  }
                                              }),
                                     name='ica_aroma_metadata_fmt')

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (inputnode, rm_non_steady_state, [('skip_vols', 'begin_index')]),
        (inputnode, rm_non_steady_state, [('bold_std', 'in_file')]),
        (inputnode, calc_median_val, [('bold_mask_std', 'mask_file')]),
        (inputnode, trim_movement, [('movpar_file', 'movpar_file')]),
        (inputnode, trim_movement, [('skip_vols', 'skip_vols')]),
        (rm_non_steady_state, calc_median_val, [('out_file', 'in_file')]),
        (rm_non_steady_state, calc_bold_mean, [('out_file', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (rm_non_steady_state, smooth, [('out_file', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('bold_mask_std', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('bold_mask_std', 'report_mask'),
                                ('bold_mask_std', 'mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        (inputnode, ica_aroma_confound_extraction, [('skip_vols', 'skip_vols')
                                                    ]),
        (ica_aroma_confound_extraction, ica_aroma_metadata_fmt,
         [('aroma_metadata', 'in_file')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        (ica_aroma_metadata_fmt, outputnode, [('output', 'aroma_metadata')]),
        (ica_aroma, outputnode, [('out_report', 'out_report')]),
    ])

    return workflow