Ejemplo n.º 1
0
def merge_sentences(input_dict):
    """
    Merges the input sentences in XML according to the specified method.
    """
    method = input_dict['method']
    merged_sen, id_to_sent = set(), {}
    ids_list = []
    for i, sentsXML in enumerate(input_dict['sentences']):
        sents = nlp.parse_def_sentences(sentsXML)
        ids = set(map(lambda x: x['id'], sents))
        ids_list.append(ids)
        # Save the map from id to sentence
        for sent in sents:
            id_to_sent[sent['id']] = sent
        if i == 0 and method != 'intersection_two':
            merged_sen = ids
        if method == 'union':
            merged_sen = merged_sen | ids
        elif method == 'intersection':
            merged_sen = merged_sen & ids
        elif method == 'intersection_two':
            # Skip the current set of sentences
            # and intersect it with the others.
            for ids_alt in ids_list[:i] + ids_list[i+1:]:
                # As long as (at least) two sets agree with a sentence it 
                # will be in the resulting set.
                merged_sen = merged_sen | (ids_alt & ids)
    return {'merged_sentences': nlp.sentences_to_xml([id_to_sent[sid] for sid in merged_sen])}
Ejemplo n.º 2
0
def merge_sentences(input_dict):
    """
    Merges the input sentences in XML according to the specified method.
    """
    method = input_dict['method']
    merged_sen, id_to_sent = set(), {}
    ids_list = []
    for i, sentsXML in enumerate(input_dict['sentences']):
        sents = nlp.parse_def_sentences(sentsXML)
        ids = set(map(lambda x: x['id'], sents))
        ids_list.append(ids)
        # Save the map from id to sentence
        for sent in sents:
            id_to_sent[sent['id']] = sent
        if i == 0 and method != 'intersection_two':
            merged_sen = ids
        if method == 'union':
            merged_sen = merged_sen | ids
        elif method == 'intersection':
            merged_sen = merged_sen & ids
        elif method == 'intersection_two':
            # Skip the current set of sentences
            # and intersect it with the others.
            for ids_alt in ids_list[:i] + ids_list[i + 1:]:
                # As long as (at least) two sets agree with a sentence it
                # will be in the resulting set.
                merged_sen = merged_sen | (ids_alt & ids)
    return {
        'merged_sentences':
        nlp.sentences_to_xml([id_to_sent[sid] for sid in merged_sen])
    }
Ejemplo n.º 3
0
def definition_sentences_viewer(request, input_dict, output_dict, widget):
    """
    Parses the input XML and displays the definition sentences given as input.
    
    @author: Anze Vavpetic, 2012
    """
    sentences = nlp.parse_def_sentences(input_dict['candidates']) 
    return render(request, 'visualizations/def_sentences.html',{'widget' : widget, 'sentences' : sentences})