def run_example():
    logger.info("Running relation extraction example......")
    computed = ComputedRelationExtraction()
    ref_dict = ReferentDictRelationExtraction(
        ref_dict=str(LIBRARY_ROOT / "datasets" / "coref.dict1.tsv"))
    vo = VerboceanRelationExtraction(
        vo_file=str(LIBRARY_ROOT / "datasets" /
                    "verbocean.unrefined.2004-05-20.txt"))
    wiki = WikipediaRelationExtraction()
    wn = WordnetRelationExtraction()
    embed = WordEmbeddingRelationExtraction(method=EmbeddingMethod.ELMO)

    mention_x1 = MentionDataLight(
        "IBM",
        mention_context=
        "IBM manufactures and markets computer hardware, middleware and software",
    )
    mention_y1 = MentionDataLight(
        "International Business Machines",
        mention_context="International Business Machines Corporation is an "
        "American multinational information technology company",
    )

    computed_relations = computed.extract_all_relations(mention_x1, mention_y1)
    ref_dict_relations = ref_dict.extract_all_relations(mention_x1, mention_y1)
    vo_relations = vo.extract_all_relations(mention_x1, mention_y1)
    wiki_relations = wiki.extract_all_relations(mention_x1, mention_y1)
    embed_relations = embed.extract_all_relations(mention_x1, mention_y1)
    wn_relaions = wn.extract_all_relations(mention_x1, mention_y1)

    if RelationType.NO_RELATION_FOUND in computed_relations:
        logger.info("No Computed relation found")
    else:
        logger.info("Found Computed relations-%s",
                    str(list(computed_relations)))

    if RelationType.NO_RELATION_FOUND in ref_dict_relations:
        logger.info("No Referent-Dict relation found")
    else:
        logger.info("Found Referent-Dict relations-%s",
                    str(list(ref_dict_relations)))

    if RelationType.NO_RELATION_FOUND in vo_relations:
        logger.info("No Verb-Ocean relation found")
    else:
        logger.info("Found Verb-Ocean relations-%s", str(list(vo_relations)))

    if RelationType.NO_RELATION_FOUND in wiki_relations:
        logger.info("No Wikipedia relation found")
    else:
        logger.info("Found Wikipedia relations-%s", str(wiki_relations))
    if RelationType.NO_RELATION_FOUND in embed_relations:
        logger.info("No Embedded relation found")
    else:
        logger.info("Found Embedded relations-%s", str(list(embed_relations)))
    if RelationType.NO_RELATION_FOUND in wn_relaions:
        logger.info("No Wordnet relation found")
    else:
        logger.info("Found Wordnet relations-%s", str(wn_relaions))
Ejemplo n.º 2
0
def run_example():
    logger.info('Running relation extraction example......')
    computed = ComputedRelationExtraction()
    ref_dict = ReferentDictRelationExtraction(OnlineOROfflineMethod.ONLINE,
                                              LIBRARY_ROOT + '/datasets/ref.dict1.tsv')
    vo = VerboceanRelationExtraction(OnlineOROfflineMethod.ONLINE,
                                     LIBRARY_ROOT + '/datasets/verbocean.unrefined.2004-05-20.txt')
    wiki = WikipediaRelationExtraction(WikipediaSearchMethod.ONLINE)
    wn = WordnetRelationExtraction(OnlineOROfflineMethod.ONLINE)

    mention_x1 = MentionDataLight(
        'IBM',
        mention_context='IBM manufactures and markets computer hardware, middleware and software')
    mention_y1 = MentionDataLight(
        'International Business Machines',
        mention_context='International Business Machines Corporation is an '
                        'American multinational information technology company')

    computed_relations = computed.extract_all_relations(mention_x1, mention_y1)
    ref_dict_relations = ref_dict.extract_all_relations(mention_x1, mention_y1)
    vo_relations = vo.extract_all_relations(mention_x1, mention_y1)
    wiki_relations = wiki.extract_sub_relations(mention_x1, mention_y1,
                                                RelationType.WIKIPEDIA_REDIRECT_LINK)
    embed = WordEmbeddingRelationExtraction(
        EmbeddingMethod.ELMO)
    embed_relations = embed.extract_all_relations(mention_x1, mention_y1)
    wn_relaions = wn.extract_sub_relations(mention_x1, mention_y1,
                                           RelationType.WORDNET_DERIVATIONALLY)

    if RelationType.NO_RELATION_FOUND in computed_relations:
        logger.info('No Computed relation found')
    else:
        logger.info('Found Computed relations-%s', str(list(computed_relations)))

    if RelationType.NO_RELATION_FOUND in ref_dict_relations:
        logger.info('No Referent-Dict relation found')
    else:
        logger.info('Found Referent-Dict relations-%s', str(list(ref_dict_relations)))

    if RelationType.NO_RELATION_FOUND in vo_relations:
        logger.info('No Verb-Ocean relation found')
    else:
        logger.info('Found Verb-Ocean relations-%s', str(list(vo_relations)))

    if RelationType.NO_RELATION_FOUND in wiki_relations:
        logger.info('No Wikipedia relation found')
    else:
        logger.info('Found Wikipedia relations-%s', str(list(wiki_relations)))
    if RelationType.NO_RELATION_FOUND in embed_relations:
        logger.info('No Embedded relation found')
    else:
        logger.info('Found Embedded relations-%s', str(list(embed_relations)))
    if RelationType.NO_RELATION_FOUND in wn_relaions:
        logger.info('No Wordnet relation found')
    else:
        logger.info('Found Wordnet relations-%s', str(list(wn_relaions)))
Ejemplo n.º 3
0
def test_compute_relations():
    mentions = get_compute_mentions()
    compute = ComputedRelationExtraction()

    assert not compute.extract_all_relations(
        mentions[0], mentions[0]).isdisjoint(set([RelationType.EXACT_STRING]))

    assert not compute.extract_all_relations(
        mentions[0], mentions[1]).isdisjoint(set([RelationType.SAME_HEAD_LEMMA,
                                                  RelationType.FUZZY_HEAD_FIT]))

    assert compute.extract_all_relations(
        mentions[0], mentions[2]).pop() == RelationType.NO_RELATION_FOUND
Ejemplo n.º 4
0
def load_modules(cdc_resources):
    models = list()
    models.append(ComputedRelationExtraction())
    models.append(
        WikipediaRelationExtraction(
            cdc_resources.wiki_search_method,
            wiki_file=cdc_resources.wiki_folder,
            host=cdc_resources.elastic_host,
            port=cdc_resources.elastic_port,
            index=cdc_resources.elastic_index,
        )
    )
    models.append(
        WordEmbeddingRelationExtraction(
            cdc_resources.embed_search_method,
            glove_file=cdc_resources.glove_file,
            elmo_file=cdc_resources.elmo_file,
            cos_accepted_dist=0.75,
        )
    )
    models.append(
        ReferentDictRelationExtraction(
            cdc_resources.referent_dict_method, cdc_resources.referent_dict_file
        )
    )
    return models
    def get_module_from_relation(self, relation_type):
        if RelationType.WITHIN_DOC_COREF == relation_type:
            ret_model = self.within_doc
        elif relation_type in [
                RelationType.EXACT_STRING, RelationType.SAME_HEAD_LEMMA,
                RelationType.SAME_HEAD_LEMMA_RELAX,
                RelationType.FUZZY_HEAD_FIT, RelationType.FUZZY_FIT
        ]:
            ret_model = ComputedRelationExtraction()
        elif relation_type in [
                RelationType.WORDNET_SAME_SYNSET_ENTITY,
                RelationType.WORDNET_PARTIAL_SYNSET_MATCH,
                RelationType.WORDNET_DERIVATIONALLY,
                RelationType.WORDNET_SAME_SYNSET_EVENT
        ]:
            ret_model = self.wordnet
        elif RelationType.WORD_EMBEDDING_MATCH == relation_type:
            ret_model = self.embeds
        elif relation_type in [
                RelationType.WIKIPEDIA_REDIRECT_LINK,
                RelationType.WIKIPEDIA_DISAMBIGUATION,
                RelationType.WIKIPEDIA_BE_COMP,
                RelationType.WIKIPEDIA_CATEGORY,
                RelationType.WIKIPEDIA_TITLE_PARENTHESIS
        ]:
            ret_model = self.wiki
        elif RelationType.REFERENT_DICT == relation_type:
            ret_model = self.ref_dict
        elif RelationType.VERBOCEAN_MATCH == relation_type:
            ret_model = self.vo
        else:
            raise Exception('Not a Supported RelationType-' +
                            str(relation_type))

        return ret_model