def remove_stopwords(words): """Remove stop words from list of tokenized words""" new_words = [] for word in words: if word not in stopwords.words('english'): new_words.append(word) return new_words
def remove_punc_stopwords_lower(s): """ INPUT: string OUTPUT: string removes stopwords from the string and lower-cases the string. """ stop = stopwords.words('english') regex = r"\W+" return " ".join([i for i in re.split(regex, s.lower()) if i not in stop])
def generate_unigrams(text): list_of_c_punctuation = string.punctuation stop_words = stopwords.words('english') unigrams = [] punctuation_removed = [ char for char in list(text) if char not in list_of_c_punctuation ] punctuation_removed = ''.join(punctuation_removed) return [ word for word in punctuation_removed.split() if word.lower() not in stop_words ]
def __init__(self, data): self.stop = stopwords.words("english") self.data = [word_tokenize(word) for word in data]
from nltk import stopwords filtered_words = [word for word in word_list if word not in stopwords.words('english')] def comp(list1, list2): walker_count = 0 nomatches = [] for i in list1: if i in list2: walker_count +=1 else: nomatches.append(i) return walker_count*1.0/len(list1), nomatches