Ejemplo n.º 1
0
def find_combined_taggers_accuracy(train_set, test_set):
    # finding most used tag
    train_words = [word for sent in train_set for word in sent]
    train_set_tags = [tag for (word, tag) in train_words]
    most_frequent_tag = FreqDist(train_set_tags).max()
    default_tagger = DefaultTagger(most_frequent_tag)

    # default tagger
    default_tagger_result = default_tagger.evaluate(test_set)
    print("Default Tagger accuracy: ", default_tagger_result)

    # regex tagger
    patterns = [
        (r'.*ing$', 'VBG'),  # gerunds
        (r'.*ed$', 'VBD'),  # simple past
        (r'.*es$', 'VBZ'),  # 3rd singular present
        (r'.*ould$', 'MD'),  # modals
        (r'.*\'s$', 'NN$'),  # possessive nouns
        (r'.*s$', 'NNS'),  # plural nouns
        (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'),  # cardinal numbers
        (r'.*', 'NN')  # nouns (default)
    ]
    regex_tagger = RegexpTagger(patterns)
    regex_tagger_result = regex_tagger.evaluate(test_set)
    print("Regex Tagger Accuracy: ", regex_tagger_result)

    # unigram tagger with default tagger as backoff
    unigram_tagger = UnigramTagger(train_set, backoff=default_tagger)
    unigram_tagger_result = unigram_tagger.evaluate(test_set)
    print("Unigram Tagger accuracy (Backoff = Default Tagger): ",
          unigram_tagger_result)

    # bigram tagger with different backoffs
    bigram_tagger = BigramTagger(train_set)
    bigram_tagger_backoff_unigram = BigramTagger(train_set,
                                                 backoff=unigram_tagger)
    bigram_tagger_backoff_regex = BigramTagger(train_set, backoff=regex_tagger)

    bigram_tagger_result = bigram_tagger.evaluate(test_set)
    bigram_tagger_backoff_regex_result = bigram_tagger_backoff_regex.evaluate(
        test_set)
    bigram_tagger_backoff_unigram_result = bigram_tagger_backoff_unigram.evaluate(
        test_set)

    print("Bigram Tagger Accuracy: ", bigram_tagger_result)
    print("Bigram Tagger Accuracy (Backoff = Regex Tagger): ",
          bigram_tagger_backoff_regex_result)
    print("Bigram Tagger Accuracy (Backoff = Unigram Tagger): ",
          bigram_tagger_backoff_unigram_result)
Ejemplo n.º 2
0
def get_pos_tagger():
    from nltk.corpus import brown
    regexp_tagger = nltk.RegexpTagger([
        (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
        (r'(The|the|A|a|An|an)$', 'AT'),  # articles
        (r'.*able$', 'JJ'),  # adjectives
        (r'.*ness$', 'NN'),  # nouns formed from adjectives
        (r'.*ly$', 'RB'),  # adverbs
        (r'.*s$', 'NNS'),  # plural nouns
        (r'.*ing$', 'VBG'),  # gerunds
        (r'.*ed$', 'VBD'),  # past tense verbs
        (r'.*', 'NN')  # nouns (default)
    ])
    brown_train = brown.tagged_sents()
    unigram_tagger = UnigramTagger(brown_train, backoff=regexp_tagger)
    bigram_tagger = BigramTagger(brown_train, backoff=unigram_tagger)
    trigram_tagger = TrigramTagger(brown_train, backoff=bigram_tagger)

    # Override particular words
    main_tagger = nltk.RegexpTagger(
        [(r'(A|a|An|an)$', 'ex_quant'),
         (r'(Every|every|All|all)$', 'univ_quant')],
        backoff=trigram_tagger)

    return main_tagger
Ejemplo n.º 3
0
def no_backoff_taggers(test, train, corpus='floresta'):
    default_tagger = default_tagger_corpus(corpus)

    info('training {} taggers without backoff'.format(corpus))
    info('this may take a while...\n')

    info(default_tagger)
    default_score = default_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(default_score))

    # unigram tagger
    uni_tagger = UnigramTagger(train)
    # bigram tagger
    bi_tagger = BigramTagger(train)
    # trigram tagger
    tri_tagger = TrigramTagger(train)

    info(uni_tagger)
    uni_score = uni_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(uni_score))

    info(bi_tagger)
    bi_score = bi_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(bi_score))

    info(tri_tagger)
    tri_score = tri_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(tri_score))
Ejemplo n.º 4
0
def train_tagger(corpus_name, corpus):
	"""
	Train the taggers and saves them
	
	Args:
		corpus_name: 	name of the corpus used to create the tagger
		corpus: 		corpus for creating the tagger
	"""
	
	#List of n-gram taggers names
	complete_names = [corpus_name + '_' + x for x in N_GRAM_NAMES]
	
	# Training UnigramTagger
	tagger1 = UnigramTagger(corpus)
	utilities.save_pickle(tagger1, complete_names[0], TAGGER_EXTENSION, TAGGER_PATH)
	print "UnigramTagger trained with", corpus_name
	
	# Training BigramTagger
	tagger2 = BigramTagger(corpus)
	utilities.save_pickle(tagger2, complete_names[1], TAGGER_EXTENSION, TAGGER_PATH)
	print "BigramTagger trained with", corpus_name
	
	# Training TrigramTagger
	tagger3 = TrigramTagger(corpus)
	utilities.save_pickle(tagger3, complete_names[2], TAGGER_EXTENSION, TAGGER_PATH)
	print "TrigramTagger trained with", corpus_name
Ejemplo n.º 5
0
 def __init__(self, mode, train_sents):
     if mode == TRIGRAM:
         self.tagger = UnigramTagger(train_sents)
         self.tagger = BigramTagger(train_sents, backoff=self.tagger)
         self.tagger = TrigramTagger(train_sents, backoff=self.tagger)
     elif HDM:
         self.tagger = HiddenMarkovModelTagger.train(train_sents)
Ejemplo n.º 6
0
def TrainTaggers(training, testing):
    global results
    Unigram = UnigramTagger(training, backoff = default)
    print('unigram trained')
    Bigram = BigramTagger(training, backoff = Unigram)
    print('bigram trained')
    Trigram = TrigramTagger(training, backoff = Bigram)
    print('trigram trained')
    results += [Trigram.evaluate(testing)]
Ejemplo n.º 7
0
    def train(self, model_path):
        corpus = [[(token.lower(), tag) for token, tag in sent]
                  for sent in CORPUS]

        unigram_tagger = UnigramTagger(corpus, backoff=DefaultTagger('UNK'))
        bigram_tagger = BigramTagger(corpus, backoff=unigram_tagger)

        with open(model_path, "wb") as model_file:
            pickle.dump(bigram_tagger, model_file)
Ejemplo n.º 8
0
    def __init__(self, train_sents, to_detect_list, n_gram=1):
        train_data = [[(t, c) for w, t, c in sent] for sent in train_sents]

        self.tagger = UnigramTagger(train_data)
        if n_gram > 1:
            self.tagger = BigramTagger(train_data, backoff=self.tagger)
        if n_gram > 2:
            self.tagger = TrigramTagger(train_data, backoff=self.tagger)
        self.to_detect_list = to_detect_list
Ejemplo n.º 9
0
    def __init__(self, train_sents):
        """Show parameters.

        train_sents: trained sentences which have already been tagged.
        using Brown, conll2000, and TreeBank corpus.
        """
        t0 = DefaultTagger('NN')
        t1 = UnigramTagger(train_sents, backoff=t0)
        t2 = BigramTagger(train_sents, backoff=t1)
        self.tagger = TrigramTagger(train_sents, backoff=t2)
Ejemplo n.º 10
0
    def pos_tag(self):
        tokenize_obj = NLTKTokenize(self.options)
        res = tokenize_obj.tokenize()
        tokens = res['result']
        tags = []

        # Performs Bigram / Unigram / Regex Tagging
        if self.options.get('tagger') in ['unigram', 'bigram', 'regex']:
            trainer = self.options['train'] if self.options.get(
                'train') in TRAINERS else DEFAULT_TRAIN

            train = brown.tagged_sents(categories=trainer)

            # Create your custom regex tagging pattern here
            regex_tag = RegexpTagger([(r'^[-\:]?[0-9]+(.[0-9]+)?$', 'CD'),
                                      (r'.*able$', 'JJ'),
                                      (r'^[A-Z].*$', 'NNP'), (r'.*ly$', 'RB'),
                                      (r'.*s$', 'NNS'), (r'.*ing$', 'VBG'),
                                      (r'.*ed$', 'VBD'), (r'.*', 'NN')])

            current = os.path.dirname(os.path.abspath(__file__))

            # Unigram tag training data load / dump pickle
            pkl_name = current + '/trained/unigram_' + trainer + '.pkl'
            if os.path.isfile(pkl_name):
                with open(pkl_name, 'rb') as pkl:
                    unigram_tag = load(pkl)
            else:
                unigram_tag = UnigramTagger(train, backoff=regex_tag)
                with open(pkl_name, 'wb') as pkl:
                    dump(unigram_tag, pkl, -1)

            # Bigram tag training data load / dump pickle
            if self.options['tagger'] == 'bigram':
                pkl_name = current + '/trained/bigram_' + trainer + '.pkl'
                if os.path.isfile(pkl_name):
                    with open(pkl_name, 'rb') as pkl:
                        bigram_tag = load(pkl)
                else:
                    bigram_tag = BigramTagger(train, backoff=unigram_tag)
                    with open(pkl_name, 'wb') as pkl:
                        dump(bigram_tag, pkl, -1)
                tags = bigram_tag.tag(tokens)  # Bigram tagging performed here
            elif self.options['tagger'] == 'unigram':
                tags = unigram_tag.tag(
                    tokens)  # Unigram tagging performed here
            else:
                tags = regex_tag.tag(tokens)  # Regex tagging performed here

        # Performs default pos_tag
        elif self.options.get('tagger', DEFAULT_TAGGER) == 'pos':
            tags = pos_tag(tokens)

        return self._dump(tags)
Ejemplo n.º 11
0
def train_tagger(corpus_name, corpus):
    """ Function to train tagger. """
    # Training UnigramTagger.
    uni_tag = UnigramTagger(corpus)
    save_tagger('{}_unigram.tagger'.format(corpus_name), uni_tag)
    # Training BigramTagger.
    bi_tag = BigramTagger(corpus, backoff=uni_tag)
    save_tagger('{}_bigram.tagger'.format(corpus_name), bi_tag)
    _msg = str("Tagger trained with {} using "
               "UnigramTagger and BigramTagger.").format(corpus_name)
    print(_msg, file=sys.stderr)
Ejemplo n.º 12
0
def create_tagger(sents,patterns=PATTERNS,maxngram=4):
    '''Обучение Backoff tagger на каком-либо корпусе предложений'''
    
    train = sents
    def_tagger = DefaultTagger('NN')
    re_tagger = RegexpTagger(patterns, backoff=def_tagger)
    uni_tagger = UnigramTagger(train, backoff=re_tagger) 
    bi_tagger = BigramTagger(train, backoff=uni_tagger) 
    tri_tagger = TrigramTagger(train, backoff=bi_tagger) 
    ngram_tagger = NgramTagger(maxngram, train, backoff=tri_tagger)
    return ngram_tagger
Ejemplo n.º 13
0
def backoff_taggers(test, train, save, corpus='floresta'):
    default_tagger = default_tagger_corpus(corpus)
    info('training {} taggers with backoff'.format(corpus))
    info('this may take a while...\n')

    info(default_tagger)
    default_score = default_tagger.evaluate(test)
    print('accuracy score: {}\n'.format(default_score))

    # UNIGRAM TAGGER WITH BACKOFF
    uni_tagger_backoff = UnigramTagger(train, backoff=default_tagger)

    # BIGRAM TAGGER WITH BACKOFF
    bi_tagger_backoff = BigramTagger(train, backoff=uni_tagger_backoff)

    # TRIGRAM TAGGER WITH BACKOFF
    tri_tagger_backoff = TrigramTagger(train, backoff=bi_tagger_backoff)

    info(uni_tagger_backoff)
    uni_backoff_score = uni_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(uni_backoff_score))

    info(bi_tagger_backoff)
    bi_backoff_score = bi_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(bi_backoff_score))

    info(tri_tagger_backoff)
    tri_backoff_score = tri_tagger_backoff.evaluate(test)
    print('accuracy score: {}\n'.format(tri_backoff_score))

    if not save:
        return

    accuracy_dict = {}
    accuracy_dict['uni'] = uni_backoff_score
    accuracy_dict['bi'] = bi_backoff_score
    accuracy_dict['tri'] = tri_backoff_score

    # Saving our Trigram-tagger with backoff
    if uni_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_unigram_tagger_backoff.pkl'.format(corpus)
        output = open(tagger_file, 'wb')
        dump(uni_tagger_backoff, output, -1)
    elif bi_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_bigram_tagger_backoff.pkl'.format(corpus)
        output = open(tagger_file, 'wb')
        dump(bi_tagger_backoff, output, -1)
    elif tri_backoff_score == max(accuracy_dict.values()):
        tagger_file = '{}_trigram_tagger_backoff.pkl'.format(corpus)
        dump(tri_tagger_backoff, output, -1)
    output.close()
    info('saving %s...\n', tagger_file)
Ejemplo n.º 14
0
def get_tagger(type="StandfordPOSTagger"):
    if type == "Custom":
        brown_tagged_sents = brown.tagged_sents(categories='news',
                                                tagset='universal')
        t0 = DefaultTagger('NOUN')
        t1 = UnigramTagger(brown_tagged_sents, backoff=t0)
        t2 = BigramTagger(brown_tagged_sents, backoff=t1)
    else:
        t2 = StanfordPOSTagger(
            'data/./models/wsj-0-18-bidirectional-distsim.tagger',
            '3rdparty_libs/stanford-postagger.jar')

    return t2
Ejemplo n.º 15
0
	def __init__(self):
		if os.path.exists('tagger_spanish.pickle'):
			with open('tagger_spanish.pickle', 'r') as file_obj:
			    self.tagger = pickle.load(file_obj)
		else:
			print 'tagger_spanish.pickle not found. Training tagger... may take a few minutes...'
			from nltk import UnigramTagger, BigramTagger, TrigramTagger
			from nltk.corpus import cess_esp
			sents = cess_esp.tagged_sents()
			unigram_tagger = UnigramTagger(sents)
			bigram_tagger = BigramTagger(sents, backoff=unigram_tagger) # uses unigram tagger in case it can't tag a word
			self.tagger = unigram_tagger
			with open('tagger_spanish.pickle', 'w') as file_obj:
			    pickle.dump(self.tagger, file_obj)		# Dump trained tagger
 def __init__(self, train=None, default=None, name=None):
     self.name = name
     # As found on page 199 of the nltk book
     regexps = [
         (r'.*ing$', 'VBG'),  # gerunds
         (r'.*ed$', 'VBD'),  # simple past
         (r'.*es$', 'VBZ'),  # 3rd singular present
         (r'.*ould$', 'MD'),  # modals
         (r'.*\'s$', 'NN$'),  # possessive nouns
         (r'.*s$', 'NNS'),  # plural nouns
         (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
     ]
     self.default = default
     self.regex = RegexpTagger(regexps, backoff=self.default)
     self.unigram = UnigramTagger(train=train, backoff=self.regex)
     self.bigram = BigramTagger(train=train, backoff=self.unigram)
Ejemplo n.º 17
0
def trained_tagger():
    """Returns a trained trigram tagger
    existing : set to True if already trained tagger has been pickled
    """
    # Aggregate trained sentences for N-Gram Taggers
    train_sents = nltk.corpus.brown.tagged_sents()
    train_sents += nltk.corpus.conll2000.tagged_sents()
    train_sents += nltk.corpus.treebank.tagged_sents()

    t0 = DefaultTagger('NN')
    t1 = UnigramTagger(train_sents, backoff=t0)
    t2 = BigramTagger(train_sents, backoff=t1)
    trigram_tagger = TrigramTagger(train_sents, backoff=t2)

    pickle.dump(trigram_tagger, open(r'DataBase/trained_tagger.pkl', 'wb'))

    return trigram_tagger
Ejemplo n.º 18
0
def ngram_tag_with_backoff():
    fd = FreqDist(brown.words(categories='news'))
    #Get the most frequent tag of each word in the corpus
    cfd = ConditionalFreqDist(brown.tagged_words(
        categories='news'))  #, backoff=nltk.DefaultTagger('NN'))
    #Get the first 100 most common words
    most_freq_words = fd.most_common(1000000)
    #Create a dictionary in form of  a tuple (word, most_likely_tag)
    likely_tags = dict(
        (word, cfd[word].max()) for (word, _) in most_freq_words)
    #Unigram means tag by using its most frequency tag (no context needed) just like unigram in the Ngram topic
    lookup_tagger = UnigramTagger(model=likely_tags)
    #With Backoff
    train_len = int(len(brown_tagged_sents) * 0.9)
    print(brown_tagged_sents[train_len:])
    bigram_tagger = BigramTagger(brown_tagged_sents[:train_len],
                                 backoff=lookup_tagger)
    score = bigram_tagger.evaluate(brown_tagged_sents[train_len:])
    print(score)
Ejemplo n.º 19
0
def train_and_save_bigram_tagger():
    train_text = brown.tagged_sents()
    regexp_tagger = RegexpTagger([
        (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
        (r'(The|the|A|a|An|an)$', 'AT'),  # articles
        (r'.*able$', 'JJ'),  # adjectives
        (r'.*ness$', 'NN'),  # nouns formed from adjectives
        (r'.*ly$', 'RB'),  # adverbs
        (r'.*s$', 'NNS'),  # plural nouns
        (r'.*ing$', 'VBG'),  # gerunds
        (r'.*ed$', 'VBD'),  # past tense verbs
        (r'.*', 'NN')  # nouns (default)
    ])

    unigram_tagger = UnigramTagger(train_text, backoff=regexp_tagger)
    bigram_tagger = BigramTagger(train_text, backoff=unigram_tagger)

    output = open('../taggers/bigram_tagger.pkl', 'wb')
    dump(bigram_tagger, output, -1)
    output.close()
Ejemplo n.º 20
0
def trained_tagger():
    """Returns a trained trigram tagger
    existing : set to True if already trained tagger has been pickled
    """

    if os.path.exists(os.path.join(os.getcwd(),
                                   r"DataBase/trained_tagger.pkl")):
        print("Trained Tagger File already Exists..")
        return

    # Aggregate trained sentences for N-Gram Taggers
    train_sents = nltk.corpus.brown.tagged_sents()
    train_sents += nltk.corpus.conll2000.tagged_sents()
    train_sents += nltk.corpus.treebank.tagged_sents()

    t0 = DefaultTagger('NN')
    t1 = UnigramTagger(train_sents, backoff=t0)
    t2 = BigramTagger(train_sents, backoff=t1)
    trigram_tagger = TrigramTagger(train_sents, backoff=t2)

    pickle.dump(trigram_tagger, open(r'DataBase/trained_tagger.pkl', 'wb'))
Ejemplo n.º 21
0
    def __init__(self, train_sents, load=False):
        if load:
            print 'Loading saved tagger...',
            self.load()
            print 'done.'
        else:
            time_start = time.time()

            print 'Training the tagger...'
            tag_counts = Counter([t for s in train_sents for w, t in s])
            default_tag = argmax(tag_counts)

            def_tgr = DefaultTagger(default_tag)
            af_tgr = AffixTagger(train_sents, affix_length=-3, backoff=def_tgr)
            uni_tgr = UnigramTagger(train_sents, backoff=af_tgr)
            bi_tgr = BigramTagger(train_sents, backoff=uni_tgr)
            tri_tgr = TrigramTagger(train_sents, backoff=bi_tgr)
            self.tgr = tri_tgr
            print 'Done.'

            time_stop = time.time()
            print 'Training time: {0:.2f}s'.format(time_stop - time_start)
Ejemplo n.º 22
0
def prepare_toolset():
    toolset = {}
    patterns = [(r'^[\.1-9]+$', 'NUM'), (r'^[^a-zA-Z]+$', '.'),
                (r'^[^a-zA-Z]*[a-zA-Z]+[-\'][a-zA-Z]+[^a-zA-Z]*$', 'NOUN'),
                (r'^.*[a-zA-Z]+[^-a-zA-Z]+[a-zA-Z]+.*$', '.')]
    train_set = brown.tagged_sents(
        categories='learned', tagset='universal') + brown.tagged_sents(
            categories='news', tagset='universal') + brown.tagged_sents(
                categories='reviews', tagset='universal')
    utgr = UnigramTagger(train=train_set, backoff=DefaultTagger('NN'))
    btgr = BigramTagger(train=train_set, backoff=utgr)
    ttgr = TrigramTagger(train=train_set, backoff=btgr)
    toolset['tgr'] = RegexpTagger(regexps=patterns, backoff=ttgr)
    toolset['sw'] = stopwords.words('english')
    toolset['lr'] = WordNetLemmatizer()
    toolset['wntg'] = {
        'NOUN': wordnet.NOUN,
        'VERB': wordnet.VERB,
        'ADJ': wordnet.ADJ,
        'ADV': wordnet.ADV,
        'X': wordnet.NOUN
    }
    print('Tools Ready')
    return toolset
Ejemplo n.º 23
0
    def createModel(self):

        model_name = None
        try:
            unigrams = self.buildUnigrams()

            N = len(self.corpusSents)
            toTraining = round(self.training_portion * N)

            #logging.info("Sentencias totales:" + str(N))

            training = self.corpusSents[:toTraining]
            test = self.corpusSents[toTraining:]

            post_patterns = []

            for regex, post in self.regex_list:
                try:
                    regex = regex.decode('utf-8')
                except:
                    pass

                post_patterns.append((regex, post))

            for regex, post in self.config.items('postaggers.regex'):
                post_patterns.append((regex.decode('utf-8'), post))

            regexpTagger = RegexpTagger(post_patterns)
            unigramTagger = UnigramTagger(unigrams + training,
                                          backoff=regexpTagger)
            bigramTagger = BigramTagger(training, backoff=unigramTagger)
            trigramTagger = TrigramTagger(training, backoff=bigramTagger)
            NTagger = NgramTagger(self.max_ngrams,
                                  training,
                                  backoff=trigramTagger)

            print("Sentencias de entrenamiento para n-taggers:" +
                  str(len(training)))
            print("Sentencias de entrenamiento para unitaggers:" +
                  str(len(unigrams)))
            print(
                "Cantidad de palabras ADICIONALES de DICCIONARIOS para el unitagger:"
                + str(len(unigrams)))
            print("Sentencias para testing:" + str(len(test)))
            print("Expresiones regulares para el Tagger:")

            for post_regex in post_patterns:
                print post_regex

            if self.training_portion != 1:

                score_ut = unigramTagger.evaluate(test)
                score_bt = bigramTagger.evaluate(test) - 0.002
                score_tt = trigramTagger.evaluate(test)
                score_nt = NTagger.evaluate(test)

                scores = [score_ut, score_bt, score_tt, score_nt]
                tagger_names = ["uTagger", "biTagger", "triTagger", "NTagger"]
                taggers = [unigramTagger, bigramTagger, trigramTagger, NTagger]

                bestTagger_index = scores.index(max(scores))
                best_msg = max(scores), tagger_names[bestTagger_index]

            fname = self.taggers_path + tagger_names[bestTagger_index]
            if os.path.isfile(fname + self.tagger_extension_file):
                fname = fname + str(len(listdir(
                    self.taggers_path))) + self.tagger_extension_file
            else:
                fname = self.taggers_path + tagger_names[
                    bestTagger_index] + self.tagger_extension_file

            model = taggers[bestTagger_index]

            f = open(fname, 'wb')
            pickle.dump(model, f)
            f.close()

            print("Guardando el tagger :" + fname)
            #logging.info("Guardando el mejor tagger :" + fname)

            model_name = fname

        except Exception, e:
            print "ERRPR EN POS TAGGER GENERATOR:", str(e)
            pdb.set_trace()
Ejemplo n.º 24
0
 def __init__(self, train_sents):
     t0 = DefaultTagger('NN')
     t1 = UnigramTagger(train_sents, backoff=t0)
     t2 = BigramTagger(train_sents, backoff=t1)
     self.tagger = TrigramTagger(train_sents, backoff=t2)
Ejemplo n.º 25
0
#b)
#using regex from nltk.org/book/chp05.html, 4.2
patterns = [
    (r'.*ing$', 'VBG'),  #gerunds
    (r'.*ed$', 'VBD'),  #simple past
    (r'.*es$', 'VBZ'),  # 3rd singular present
    (r'.*ould$', 'MD'),  #modal
    (r'.*\'s$', 'NN$'),  # possessive nouns
    (r'.*s$', 'NNS'),  #plural nouns
    (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'),  # cardinal numbers
    (r'.*', 'NN')  #nouns (default)
]
regexp_tagger = RegexpTagger(patterns)
uniB = UnigramTagger(brownT90, backoff=defaultTB90)
biB = BigramTagger(brownT90, backoff=uniB)
triB = TrigramTagger(brownT90, backoff=biB)

uniC = UnigramTagger(chatT50, backoff=defaultTChat50)
biC = BigramTagger(chatT50, backoff=uniC)
triC = TrigramTagger(chatT50, backoff=uniC)

print("Regextag50/50: ", regexp_tagger.evaluate(brownT50))
print("Default: ", defaultTB90.evaluate(brownT50))

print("Bigram Brown 50/50: ",
      BigramTagger(brownT50, backoff=defaultTB50).evaluate(brownT50))
print("Default: ", defaultTB50.evaluate(brownT50))

print("Bigram Brown 90/10: ",
      BigramTagger(brownT90, backoff=defaultTB90).evaluate(brownT90))
Ejemplo n.º 26
0
# In[17]:


display()


# ## N-Gram Tagger
# Unigram taggers assign to each wort $w_n$ the tag $t_n$, which is the most frequent tag for $w_n$ in the training corpus. N-Gram taggers are a generalization of Unigram-Taggers. During training they determine for each combination of $N-1$ previous tags $t_{n-1},t_{n-2},...$ and the current word $w_n$ the most frequent tag $t_n$. Tagging is then realized, by inspecting the $n-1$ previous tags and the current word $w_n$ and assigning the most frequent tag, which appeared for this combination in the training corpus.  
# ![NgramTagging](https://maucher.home.hdm-stuttgart.de/Pics/NGramTagging.png)

# In[18]:


baseline=nltk.DefaultTagger('NOUN')
unigram = UnigramTagger(train=train_sents,backoff=baseline)
bigram = BigramTagger(train=train_sents,backoff=unigram)


# In[19]:


bigram.evaluate(test_sents)


# # Find most frequent nouns
# The most frequent nouns usually provide information on the subject of a text. Below, the most frequent nouns of an already tagged text of the *Treebank*-corpus are determined. Let's see if we can conclude the text's subject.  

# In[20]:


from nltk.corpus import treebank
Ejemplo n.º 27
0
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.corpus import treebank
from nltk.tag import hmm
from nltk import DefaultTagger, UnigramTagger, BigramTagger, TrigramTagger
from nltk.corpus import brown
brown_a = nltk.corpus.brown.tagged_sents(
    categories=['news', 'editorial', 'reviews'])
text = brown.tagged_sents(categories='news')[:500]

t0 = DefaultTagger('NN')
t1 = UnigramTagger(text, backoff=t0)
t2 = BigramTagger(text, backoff=t1)
t3 = TrigramTagger(text, backoff=t1)
# default_tagger = nltk.data.load(nltk.tag._POS_TAGGER)

test_sent = brown.sents()[502]
# test_sent = [u'Noting', u'that', u'Plainfield', u'last', u'year', u'had', u'lost', u'the', u'Mack', u'Truck', u'Co.', u'plant', u',', u'he', u'said', u'industry', u'will', u'not', u'come', u'into', u'this', u'state', u'until', u'there', u'is', u'tax', u'reform', u'.']


def ie_preprocess(document):
    print document
    sentences = nltk.sent_tokenize(document)
    # print sentences
    trigram_tagger = nltk.TrigramTagger(brown_a, cutoff=0)
    sentences = [nltk.word_tokenize(sent) for sent in sentences]
    print "\nDefault tagger"
    x = [t0.tag(sent) for sent in sentences]
    print x
    print "\nUnigram tagger"
Ejemplo n.º 28
0
    nltk.download('averaged_perceptron_tagger')

from nltk.corpus import wordnet as wn
from nltk.corpus import treebank, conll2000, brown, conll2002
from nltk import DefaultTagger, UnigramTagger, BigramTagger

wordnet_lemmatizer = nltk.stem.WordNetLemmatizer()

# The code below trains bigram part of speech tagger from various datasets.
train_sents = treebank.tagged_sents() + brown.tagged_sents() + conll2000.tagged_sents() + conll2002.tagged_sents()
edited_train = []
for sent in train_sents:
    edited_train.append([(word.lower(),tag) for (word,tag) in sent])
t0 = DefaultTagger(None)
et1 = UnigramTagger(edited_train, backoff = t0)
et2 = BigramTagger(edited_train, backoff = et1)

# The function below converts bigram pos to wordnet pos for lemmatization
def penn_to_wn(tag):
    nltk_wn_pos = {'J':wn.ADJ,'V':wn.VERB,'N':wn.NOUN,'R':wn.ADV}
    try:
        return nltk_wn_pos[tag[0]]
    except:
        return None

# The list below is a list of unwanted tokens
unwanted_tokens = ['"','!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/','”','“','–',"'s",
                ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', '{', '|', '}', '~'] 

# The function below filters unwanted tokens from the given tokenList
def filterUnwantedCharacters(tokenList):
Ejemplo n.º 29
0
def train_brill_tagger(train_data):
    # Modules for creating the templates.
    from nltk import UnigramTagger
    # The brill tagger module in NLTK.
    from nltk.tag.brill_trainer import BrillTaggerTrainer
    from nltk import BigramTagger,UnigramTagger,TrigramTagger
    import nltk
    from pickle import dump
    #unigram_tagger = UnigramTagger(train_data)
    templates=nltk.tag.brill.fntbl37()
    #Regular expression (Regex) Tagger as a default tagger
    default_tagger = nltk.RegexpTagger(
        [(r'^[Jj]ing', 'ABN'),
         (r'^[pP]yn', 'CAV'),
         (r'^[nN]ga$', '1PSG'),
         (r'^[pP]hi$', '2PG'),
         (r'^[pP]ha$', '2PF'),
         (r'^[mM]e$', '2PM'),
         (r'^[iI]$', '3PSG'),
         (r'^[bB]an$', 'INP'),
         (r'^[Kk]a$', '3PSF'),
         (r'^[uU]$', '3PSM'),
         (r'^[kK]i$', '3PPG'),
         (r'(sha|da|na|hapoh|halor|ha|naduh|shaduh|hapdeng|haduh)$', 'IN'),
         (r'(bad|ruh|namar|hynrei|tangba|katba|katta)$', 'COC'),
         (r'(lada|haba|khnang|ynda)$', 'SUC'),
         (r'(katkum|kat|pat|wat|tang|lang)$', 'AD'),
         (r'(bun|baroh)$', 'QNT'),
         (r'^-?[0-9]+(.[0-9]+)?$', 'CN'),
         (r'(dei|long|don)$', 'CO'),
         (r'^[jJ]ong$', 'POP'),
         (r'^[sS]hah$', 'PAV'),
         (r'^[lL]ah$', 'MOD'),
         (r'^[lL]a$', 'VST'),
         (r'(ym|em|khlem|nym|kam)$', 'NEG'),
         (r'^hi$', 'EM'),
         (r'.*lade$', 'RFP'),
         (r'(dang|nang)$', 'VPP'),
         (r'([uU]n|[kK]an|[kK]in|[sS]a|[yY]n|[nN]gin|[pP]hin)$', 'VFT'),
         (r'(.*ngut|.*tylli)$', 'ADJ'),
         (r'^[bB]a$', 'COM'),
         (r'^\W+$', 'SYM'),
         (r'[^a-z\W]a$', 'IN'),
         (r'([vV]ote|[bB]ye|[cC]onstituency|[sS]outh)$', 'FR'),
         (r'.*', 'CMN')

         ])
    t0 = default_tagger
    print(train_data)
    t1 = UnigramTagger(train_data,backoff=t0)
    t2 = BigramTagger(train_data,backoff=t1)
    t3 = TrigramTagger(train_data,backoff=t2)


    trainer = BrillTaggerTrainer(initial_tagger=t3,
                                   templates=templates, trace=3,
                                   deterministic=True)
    brill_tagger = trainer.train(train_data,max_rules=10)

    # Saving the Tagger for future use
    output = open('t2.pkl', 'wb')
    dump(t3, output, -1)
    output.close()
    return brill_tagger
Ejemplo n.º 30
0
 def __init__(self, train_sentences):
     train_data = [[(t, c) for w, t, c in tree2conlltags(sent)]
                   for sent in train_sentences]
     self.tagger = BigramTagger(train_data)