Ejemplo n.º 1
0
	def get_Porb(self, unit_system="SI"):
		nmu.set_units(system=unit_system)
		energy_unit = nmu.units["energy"]
		time_unit = nmu.units["time"]
		
		Porb = []
		for sdata, _ in self.data:
			nmu.set_units(sdata["unit_system"])
			Porb.append( nmu.convert_time(sdata["system"]["Porb"], nmu.units["time"], time_unit) )

		return Porb
Ejemplo n.º 2
0
	def get_Edot(self, unit_system="SI"):
		nmu.set_units(system=unit_system)
		energy_unit = nmu.units["energy"]
		time_unit = nmu.units["time"]
		
		mEdot = []
		sEdot = []
		for sdata, _ in self.data:
			nmu.set_units(sdata["unit_system"])

			Eorb = nmu.convert_energy(abs(sdata["system"]["Eorb"]), nmu.units["energy"], energy_unit)
			porb = nmu.convert_time(sdata["system"]["Porb"], nmu.units["time"], time_unit)

			mEdot.append( sdata["stats"]["mean{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/porb )		
			sEdot.append( sdata["stats"]["stdv{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/porb )
	
		return mEdot, sEdot
Ejemplo n.º 3
0
		### compute power law fits
		(logp, logedot), (sedot, sp), (m, b) = fitting.sweeps_Edot_powerlaw(clusters, unit_system=opts.unit_system)

		if opts.verbose:
			print "\tlog(Edot) = %f * log(P) + %f"%(m, b)

		### plot data from ste file directly
		if opts.raw_data:
			mEdot = []
			Porb = []
			for cluster in clusters:
				mEdot += cluster.get_Edot(unit_system=opts.unit_system)[0]
				Porb += cluster.get_Porb(unit_system=opts.unit_system)

			ax.plot([nmu.convert_time(p, nmu.units["time"], time_unit) for p in Porb], mEdot, marker="*", markerfacecolor="none", markeredgecolor=color, markersize=4, linestyle="none")

		### plot fitting function
		p = nmu.convert_time(np.exp(logp), nmu.units["time"], time_unit)
		sp = nmu.convert_time(np.array(sp), nmu.units["time"], time_unit)
		ax.plot(p, np.exp(logedot), marker=marker, markerfacecolor="none", markeredgecolor=color, markersize=6, linestyle="none")
		### plot error estimates
		for abscissa, ordinate, errx, erry in zip(p, np.exp(logedot), sp, sedot):
			ax.plot( [abscissa, abscissa], [ordinate+erry, ordinate-erry], marker="none", color=color, linestyle="-")
			ax.plot( [abscissa-errx, abscissa+errx], [ordinate, ordinate], marker="none", color=color, linestyle="-")

		if opts.verbose:
			print label
			print "\tedot sedot p sp"
			for A, B, C, D in zip(np.exp(logedot), sedot, p, sp):
				print "\t", A, B, C, D
Ejemplo n.º 4
0
def harmonic_average(cluster, key, unit_system="SI"):
        """
        computes the harmonic average over the data within cluster
        we compute <Edot> = int dt Edot / int dt
        but we take the integral over Porb, so changing the integration variable to Porb yields

        <Edot> = int dP ( E/P * Edot**-1) * key / int dP ( E/P * Edot**-1 )

        ASSUMES spacing is even in Porb-space (within each cluster!), so the integral's measure drops out
        """
        nmu.set_units(unit_system)
        time_unit = nmu.units["time"]
        energy_unit = nmu.units["energy"]

	P = []
	E = []
	mEdot = []
	sEdot = []
	x = []
	sx = []

	for sdata, mdata in cluster.data:
		nmu.set_units(sdata["unit_system"])

		### convertion to Porb measure
		Porb = nmu.convert_time(sdata["system"]["Porb"], nmu.units["time"], time_unit)
		Eorb = nmu.convert_energy(sdata["system"]["Eorb"], nmu.units["energy"], energy_unit)

		P.append( Porb )
		E.append( Eorb )

		mEdot.append( sdata["stats"]["mean{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/Porb )
		sEdot.append( sdata["stats"]["stdv{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/Porb )

		if key == "Edot":
			x.append( sdata["stats"]["mean{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/Porb )
			sx.append( sdata["stats"]["stdv{|sum{Edot}|*(Porb/|Eorb|)}"] * Eorb/Porb )
		elif key == "E":
			x.append( sdata["stats"]["mean{sum{E}/|Eorb|}"] * Eorb )
			sx.append( sdata["stats"]["stdv{sum{E}/|Eorb|}"] * Eorb )
		else:
			raise KeyError, "key=%s not understood"%key

	### cast to arrays
	P = np.array(P)
	E = np.array(E)
	mEdot = np.array(mEdot)
	sEdot = np.array(sEdot)
	x = np.array(x)
	sx = np.array(sx)

	### compute averages
	integrand = Eorb/(Porb*mEdot)

	num = np.sum( integrand * x )
	den = np.sum( integrand )

	p = np.sum( integrand * P )

	mx = num/den
	mp = p/den

	### compute uncertainties
	T = np.sum( integrand )
	integrate = E/(P*mEdot**2)
	a = np.sum( integrand**2 * sx**2 ) / T**2
	b = np.sum( (integrate * ( x*T - np.sum( x*integrand) ))**2 * sEdot**2 ) / T**4

	smx = a + b ### uncertainty in x
	smp = np.sum( (integrate * ( P*T - np.sum( P*integrand) ))**2 * sEdot**2 ) / T**4 ### uncertainty in p


	return (mx, smx**0.5) , (mp, smp**0.5)


	'''