Ejemplo n.º 1
0
def construct_model(params, datasets, filter_hs=[3, 4, 5], batch_size=200):
    rng = np.random.RandomState(1234)
    input_height = len(datasets[0][0]) - 2
    input_width = params["embedding"].shape[1]
    filter_shapes = [p[0].shape for p in params["convs"]]
    pool_sizes = [(input_height - s[2] + 1, input_width - s[3] + 1)
                  for s in filter_shapes]

    param_sizes = {
        "input_height": input_height,
        "input_width": input_width,
        "filter_shapes": filter_shapes,
        "pool_sizes": pool_sizes
    }

    print "Param sizes: ", param_sizes
    index = T.iscalar()
    x = T.matrix('x')
    y = T.ivector('y')

    print '....Construct model'
    word_embedding = params["embedding"]
    words = shared(word_embedding, name='embedding')
    layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape(\
            (x.shape[0], 1, x.shape[1], words.shape[1]))
    # construct layers
    conv_layers = []
    conv_params = params["convs"]
    layer1_inputs = []
    for i, filter_h in enumerate(filter_hs):
        filter_shape = filter_shapes[i]
        pool_size = pool_sizes[i]
        conv_W = shared(value=np.asarray(conv_params[i][0],
                                         dtype=theano.config.floatX),
                        borrow=True,
                        name='conv_W')
        conv_b = shared(value=np.asarray(conv_params[i][1],
                                         dtype=theano.config.floatX),
                        borrow=True,
                        name='conv_b')
        conv_layer = nn.ConvPoolLayer(rng,
                                      input=layer0_input,
                                      input_shape=(batch_size, 1, input_height,
                                                   input_width),
                                      filter_shape=filter_shape,
                                      pool_size=pool_size,
                                      activation=ReLU,
                                      W=conv_W,
                                      b=conv_b)
        conv_layers.append(conv_layer)
        layer1_input = conv_layer.output.flatten(2)
        layer1_inputs.append(layer1_input)

    layer1_input = T.concatenate(layer1_inputs, 1)

    # population classifier
    pop_hidden_units = [300, 13]
    clf_w, clf_b = params["clf"]
    Ws = [
        shared(value=np.asarray(clf_w, dtype=theano.config.floatX),
               borrow=True,
               name='logis_w')
    ]
    bs = [
        shared(value=np.asarray(clf_b, dtype=theano.config.floatX),
               borrow=True,
               name='logis_b')
    ]

    pop_classifier = nn.MLPDropout(rng,
                                   input=layer1_input,
                                   layer_sizes=pop_hidden_units,
                                   dropout_rates=[0.5],
                                   activations=[ReLU],
                                   Ws=Ws,
                                   bs=bs)

    pop_loss = pop_classifier.errors(y)
    pop_pred = pop_classifier.preds

    # construct data set
    if datasets[0].shape[0] % batch_size > 0:
        extra_data_num = batch_size - datasets[0].shape[0] % batch_size
        train_set = np.random.permutation(datasets[0])
        extra_data = train_set[:extra_data_num]
        new_data = np.append(datasets[0], extra_data, axis=0)
    else:
        new_data = dataset[0]

    new_data = np.random.permutation(new_data)
    n_batches = new_data.shape[0] / batch_size
    n_train_batches = int(np.round(n_batches * 0.9))
    train_set = new_data[:n_train_batches * batch_size, :]
    train_set_x = theano.shared(np.asarray(train_set[:, :input_height],
                                           dtype=theano.config.floatX),
                                borrow=True)
    train_set_pop_y = T.cast(
        theano.shared(np.asarray(train_set[:, -2], dtype=theano.config.floatX),
                      borrow=True), 'int32')

    print '...construct test function'
    test_fn = function(
        inputs=[index],
        outputs=[pop_loss, pop_pred],
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_pop_y[index * batch_size:(index + 1) * batch_size]
        })

    results = [test_fn(i) for i in xrange(n_train_batches)]
    pop_losses = [r[0] for r in results]
    pop_train_perf = 1 - np.mean(pop_losses)
    pop_predictions = np.concatenate([r[1] for r in results])
    rs = {}
    rs["pop_preds"] = list(pop_predictions)
    rs["pop_truth"] = list(map(int, train_set[:, -2]))
    print "Population Train Performance %f" % pop_train_perf

    return rs
def run_cnn(exp_name,
            dataset,
            embedding,
            log_fn,
            perf_fn,
            k=0,
            emb_dm=100,
            batch_size=100,
            filter_hs=[1, 2, 3],
            hidden_units=[200, 100, 11],
            dropout_rate=0.5,
            shuffle_batch=True,
            n_epochs=300,
            lr_decay=0.95,
            activation=ReLU,
            sqr_norm_lim=9,
            non_static=True,
            print_freq=5):
    """
    Train and Evaluate CNN event encoder model
    :dataset: list containing three elements[(train_x, train_y),
            (valid_x, valid_y), (test_x, test_y)]
    :embedding: word embedding with shape (|V| * emb_dm)
    :filter_hs: filter height for each paralle cnn layer
    :dropout_rate: dropout rate for full connected layers
    :n_epochs: the max number of iterations

    """
    start_time = timeit.default_timer()
    rng = np.random.RandomState(1234)

    input_height = len(dataset[0][0][0][0])
    num_sens = len(dataset[0][0][0])
    print "--input height ", input_height
    num_maps = hidden_units[0]

    ###################
    # start snippet 1 #
    ###################
    print "start to construct the model ...."
    word_x = T.tensor3("word_x")
    freq_x = T.tensor3("freq_x")
    pos_x = T.tensor3("pos_x")
    sent_x = T.matrix("sent_x")
    y_event = T.ivector("y_event")

    words = shared(value=np.asarray(embedding, dtype=theano.config.floatX),
                   name="embedding",
                   borrow=True)

    sym_dim = 20
    # the frequency embedding is 21 * sym_dim matrix
    freq_val = np.random.random((21, sym_dim)).astype(theano.config.floatX)
    freqs = shared(value=freq_val, borrow=True, name="freqs")

    pos_val = np.random.random((21, sym_dim)).astype(theano.config.floatX)
    poss = shared(value=pos_val, borrow=True, name="poss")

    # define function to keep padding vector as zero
    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(emb_dm, dtype=theano.config.floatX)
    set_zero = function([zero_vector_tensor],
                        updates=[(words,
                                  T.set_subtensor(words[0, :],
                                                  zero_vector_tensor))])

    freq_zero_tensor = T.vector()
    freq_zero_vec = np.zeros(sym_dim, dtype=theano.config.floatX)
    freq_set_zero = function([freq_zero_tensor],
                             updates=[(freqs,
                                       T.set_subtensor(freqs[0, :],
                                                       freq_zero_tensor))])

    pos_zero_tensor = T.vector()
    pos_zero_vec = np.zeros(sym_dim, dtype=theano.config.floatX)
    pos_set_zero = function([pos_zero_tensor],
                            updates=[(poss,
                                      T.set_subtensor(poss[0, :],
                                                      pos_zero_tensor))])

    word_x_emb = words[T.cast(word_x.flatten(), dtype="int32")].reshape(
        (word_x.shape[0] * word_x.shape[1], 1, word_x.shape[2], emb_dm))
    freq_x_emb = freqs[T.cast(freq_x.flatten(), dtype="int32")].reshape(
        (freq_x.shape[0] * freq_x.shape[1], 1, freq_x.shape[2], sym_dim))
    pos_x_emb = poss[T.cast(pos_x.flatten(), dtype="int32")].reshape(
        (pos_x.shape[0] * pos_x.shape[1], 1, pos_x.shape[2], sym_dim))

    layer0_input = T.concatenate([word_x_emb, freq_x_emb, pos_x_emb], axis=3)
    conv_layers = []
    layer1_inputs = []

    for i in xrange(len(filter_hs)):
        filter_shape = (num_maps, 1, filter_hs[i], emb_dm + sym_dim + sym_dim)
        pool_size = (input_height - filter_hs[i] + 1, 1)
        conv_layer = nn.ConvPoolLayer(rng,
                                      input=layer0_input,
                                      input_shape=None,
                                      filter_shape=filter_shape,
                                      pool_size=pool_size,
                                      activation=activation)
        sen_vecs = conv_layer.output.reshape(
            (word_x.shape[0], 1, word_x.shape[1], num_maps))
        # construct multi-layer sentence vectors

        conv_layers.append(conv_layer)
        layer1_inputs.append(sen_vecs)

    sen_vec = T.concatenate(layer1_inputs, 3)
    # score the sentences
    theta_value = np.random.random((len(filter_hs) * num_maps, 1))
    theta = shared(value=np.asarray(theta_value, dtype=theano.config.floatX),
                   name="theta",
                   borrow=True)
    weighted_sen_vecs, sen_score = keep_max(sen_vec, theta, k, sent_x)
    sen_score_cost = T.mean(T.sum(sen_score, axis=2).flatten(1))
    doc_vec = T.sum(weighted_sen_vecs, axis=2)
    layer1_input = doc_vec.flatten(2)
    final_sen_score = sen_score.flatten(2)

    ##############
    # classifier pop#
    ##############
    params = []
    for conv_layer in conv_layers:
        params += conv_layer.params

    params.append(theta)
    params.append(words)
    params.append(freqs)
    params.append(poss)

    gamma = as_floatX(0.001)
    beta1 = as_floatX(0.000)
    beta2 = as_floatX(0.000)
    total_cost = gamma * sen_score_cost
    total_dropout_cost = gamma * sen_score_cost

    print "Construct classifier ...."
    hidden_units[0] = num_maps * len(filter_hs)
    model = nn.MLPDropout(rng,
                          input=layer1_input,
                          layer_sizes=hidden_units,
                          dropout_rates=[dropout_rate],
                          activations=[activation])

    params += model.params

    cost = model.negative_log_likelihood(y_event)
    dropout_cost = model.dropout_negative_log_likelihood(y_event)

    total_cost += cost + beta1 * model.L1
    total_dropout_cost += dropout_cost + beta1 * model.L1

    # using adagrad
    total_grad_updates = sgd_updates_adadelta(params, total_dropout_cost,
                                              lr_decay, 1e-6, sqr_norm_lim)

    total_preds = model.preds

    #####################
    # Construct Dataset #
    #####################
    print "Copy data to GPU and constrct train/valid/test func"

    train_word_x, train_freq_x, train_pos_x, train_sent_x, train_event_y = shared_dataset(
        dataset[0])
    test_word_x, test_freq_x, test_pos_x, test_sent_x, test_event_y = shared_dataset(
        dataset[1])

    n_train_batches = int(np.ceil(1.0 * len(dataset[0][0]) / batch_size))
    n_test_batches = int(np.ceil(1.0 * len(dataset[1][0]) / batch_size))

    #####################
    # Train model func #
    #####################
    index = T.iscalar()
    train_func = function(
        [index],
        total_cost,
        updates=total_grad_updates,
        givens={
            word_x: train_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: train_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: train_pos_x[index * batch_size:(index + 1) * batch_size],
            sent_x: train_sent_x[index * batch_size:(index + 1) * batch_size],
            y_event:
            train_event_y[index * batch_size:(index + 1) * batch_size],
        })

    test_pred = function(
        [index],
        total_preds,
        givens={
            word_x: test_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: test_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: test_pos_x[index * batch_size:(index + 1) * batch_size],
            sent_x: test_sent_x[index * batch_size:(index + 1) * batch_size]
        })

    test_sentence_est = function(
        [index],
        final_sen_score,
        givens={
            word_x: test_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: test_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: test_pos_x[index * batch_size:(index + 1) * batch_size],
            sent_x: test_sent_x[index * batch_size:(index + 1) * batch_size]
        })

    train_sentence_est = function(
        [index],
        final_sen_score,
        givens={
            word_x: train_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: train_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: train_pos_x[index * batch_size:(index + 1) * batch_size],
            sent_x: train_sent_x[index * batch_size:(index + 1) * batch_size]
        })

    # apply early stop strategy
    patience = 100
    patience_increase = 2
    improvement_threshold = 1.005

    n_test = len(dataset[1][0])

    epoch = 0
    best_params = None
    best_validation_score = 0.
    test_perf = 0

    done_loop = False

    log_file = open(log_fn, 'w')

    print "Start to train the model....."
    cpu_tst_event_y = np.asarray(dataset[1][4])

    def compute_score(true_list, pred_list):
        mat = np.equal(true_list, pred_list)
        score = np.mean(mat)
        return score

    best_score = 0.0
    while (epoch < n_epochs) and not done_loop:
        start_time = timeit.default_timer()
        epoch += 1
        costs = []
        for minibatch_index in np.random.permutation(range(n_train_batches)):
            cost_epoch = train_func(minibatch_index)
            costs.append(cost_epoch)
            set_zero(zero_vec)
            freq_set_zero(freq_zero_vec)
            pos_set_zero(pos_zero_vec)

        if epoch % 1 == 0:
            # do test
            test_event_preds = np.concatenate(
                [test_pred(i) for i in xrange(n_test_batches)])
            test_event_score = compute_score(cpu_tst_event_y, test_event_preds)

            precision, recall, beta, support = precision_recall_fscore_support(
                cpu_tst_event_y, test_event_preds, pos_label=1)

            with open(
                    os.path.join(perf_fn,
                                 "%s_%d.event_pred" % (exp_name, epoch)),
                    'w') as epf:
                for p in test_event_preds:
                    epf.write("%d\n" % int(p))

            message = "Epoch %d test event perf %f, precision [%f, %f], recall[%f %f] , f1[%f, %f], train cost %f" % (
                epoch, test_event_score, precision[0], precision[1], recall[0],
                recall[1], beta[0], beta[1], np.mean(costs))
            evl_score = beta[1]

            print message
            log_file.write(message + "\n")
            log_file.flush()

            if (evl_score > best_score):
                best_score = evl_score
                # save the sentence score
                test_sen_score = [
                    test_sentence_est(i) for i in xrange(n_test_batches)
                ]
                score_file = "./results/%s_%d_test.score" % (exp_name, epoch)
                with open(score_file, "wb") as sm:
                    cPickle.dump(test_sen_score, sm)

        end_time = timeit.default_timer()
        print "Finish one iteration using %f m" % (
            (end_time - start_time) / 60.)

    log_file.flush()
    log_file.close()
Ejemplo n.º 3
0
def train_cnn_encoder(datasets,
                      word_embedding,
                      input_width=64,
                      filter_hs=[3, 4, 5],
                      hidden_units=[100, 2],
                      dropout_rate=[0.5],
                      shuffle_batch=True,
                      n_epochs=100,
                      batch_size=50,
                      lr_decay=0.95,
                      activations=[ReLU],
                      sqr_norm_lim=9,
                      non_static=True):

    start_time = timeit.default_timer()

    rng = np.random.RandomState(1234)
    input_height = len(datasets[0][0]) - 2
    filter_width = input_width
    feature_maps = hidden_units[0]
    filter_shapes = []
    pool_sizes = []
    for filter_h in filter_hs:
        filter_shapes.append((feature_maps, 1, filter_h, filter_width))
        pool_sizes.append(
            (input_height - filter_h + 1, input_width - filter_width + 1))

    parameters = [("Input Shape", input_height, input_width),
                  ("Filter Shape", filter_shapes), ("Pool Sizes", pool_sizes),
                  ("dropout rate", dropout_rate),
                  ("hidden units", hidden_units),
                  ("shuffle_batch", shuffle_batch), ("n_epochs", n_epochs),
                  ("batch size", batch_size)]
    print parameters

    # construct the model
    index = T.iscalar()
    x = T.matrix("x")
    y = T.ivector("y")
    words = shared(value=word_embedding, name="embedding")

    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(input_width, dtype=theano.config.floatX)
    set_zero = function([zero_vector_tensor],
                        updates=[(words,
                                  T.set_subtensor(words[0, :],
                                                  zero_vector_tensor))])

    layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape(
        (x.shape[0], 1, x.shape[1], words.shape[1]))

    conv_layers = []
    layer1_inputs = []
    for i in xrange(len(filter_hs)):
        filter_shape = filter_shapes[i]
        pool_size = pool_sizes[i]
        conv_layer = nn.ConvPoolLayer(rng,
                                      input=layer0_input,
                                      input_shape=(batch_size, 1, input_height,
                                                   input_width),
                                      filter_shape=filter_shape,
                                      pool_size=pool_size,
                                      activation=ReLU)
        layer1_input = conv_layer.output.flatten(2)
        conv_layers.append(conv_layer)
        layer1_inputs.append(layer1_input)

    layer1_input = T.concatenate(layer1_inputs, 1)

    ###################
    # Population Task #
    ###################
    hidden_units[0] = feature_maps * len(filter_hs)

    pop_classifier = nn.MLPDropout(rng,
                                   input=layer1_input,
                                   layer_sizes=hidden_units,
                                   dropout_rates=dropout_rate,
                                   activations=activations)

    pop_params = pop_classifier.params
    for conv_layer in conv_layers:
        pop_params += conv_layer.params

    if non_static:
        pop_params.append(words)

    pop_cost = pop_classifier.negative_log_likelihood(y)
    pop_dropout_cost = pop_classifier.dropout_negative_log_likelihood(y)

    pop_grad_updates = sgd_updates_adadelta(pop_params, pop_dropout_cost,
                                            lr_decay, 1e-6, sqr_norm_lim)

    ###################
    # EventType Task #
    ###################
    event_type_hidden_units = [feature_maps * len(filter_hs), 12]
    type_classifier = nn.MLPDropout(rng,
                                    input=layer1_input,
                                    layer_sizes=event_type_hidden_units,
                                    dropout_rates=dropout_rate,
                                    activations=activations)
    type_params = type_classifier.params
    for conv_layer in conv_layers:
        type_params += conv_layer.params

    if non_static:
        type_params.append(words)

    type_cost = type_classifier.negative_log_likelihood(y)
    type_dropout_cost = type_classifier.dropout_negative_log_likelihood(y)
    type_grad_updates = sgd_updates_adadelta(type_params, type_dropout_cost,
                                             lr_decay, 1e-6, sqr_norm_lim)

    ######################
    # Construct Data Set #
    ######################

    np.random.seed(1234)
    if datasets[0].shape[0] % batch_size > 0:
        extra_data_num = batch_size - datasets[0].shape[0] % batch_size
        train_set = np.random.permutation(datasets[0])
        extra_data = train_set[:extra_data_num]
        new_data = np.append(datasets[0], extra_data, axis=0)
    else:
        new_data = datasets[0]

    new_data = np.random.permutation(new_data)
    n_batches = new_data.shape[0] / batch_size
    n_train_batches = int(np.round(n_batches * 0.9))

    # divide the train set intp train/val sets
    if datasets[1].shape[0] % batch_size > 0:
        extra_data_num = batch_size - datasets[1].shape[0] % batch_size
        test_set = np.random.permutation(datasets[1])
        extra_data = test_set[:extra_data_num]
        new_test_data = np.append(datasets[1], extra_data, axis=0)
    else:
        new_test_data = datasets[1]
    test_set_x = new_test_data[:, :input_height]
    test_set_pop_y = np.asarray(new_test_data[:, -2], "int32")
    test_set_type_y = np.asarray(new_test_data[:, -1], "int32")

    train_set = new_data[:n_train_batches * batch_size, :]
    val_set = new_data[n_train_batches * batch_size:, :]

    print train_set[:, -1]
    borrow = True
    train_set_x = theano.shared(np.asarray(train_set[:, :input_height],
                                           dtype=theano.config.floatX),
                                borrow=borrow)
    train_set_pop_y = T.cast(
        theano.shared(np.asarray(train_set[:, -2], dtype=theano.config.floatX),
                      borrow=borrow), 'int32')
    train_set_type_y = T.cast(
        theano.shared(np.asarray(train_set[:, -1], dtype=theano.config.floatX),
                      borrow=borrow), 'int32')

    val_set_x = theano.shared(np.asarray(val_set[:, :input_height],
                                         dtype=theano.config.floatX),
                              borrow=borrow)
    val_set_pop_y = T.cast(
        theano.shared(np.asarray(val_set[:, -2], dtype=theano.config.floatX),
                      borrow=borrow), 'int32')
    val_set_type_y = T.cast(
        theano.shared(np.asarray(val_set[:, -1], dtype=theano.config.floatX),
                      borrow=borrow), 'int32')

    n_val_batches = n_batches - n_train_batches
    n_test_batches = test_set_x.shape[0] / batch_size
    print 'n_test_batches: %d' % n_test_batches
    # transform the data into shared varibale for GPU computing
    test_set_x = theano.shared(np.asarray(test_set_x,
                                          dtype=theano.config.floatX),
                               borrow=borrow)
    test_set_pop_y = theano.shared(test_set_pop_y, borrow=True)
    test_set_type_y = theano.shared(test_set_type_y, borrow=True)

    ####################
    # Train Model Func #
    ####################
    # population model
    val_pop_model = function(
        [index],
        pop_classifier.errors(y),
        givens={
            x: val_set_x[index * batch_size:(index + 1) * batch_size],
            y: val_set_pop_y[index * batch_size:(index + 1) * batch_size]
        })

    test_pop_model = function(
        [index],
        pop_classifier.errors(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_pop_y[index * batch_size:(index + 1) * batch_size]
        })

    real_test_pop_model = function(
        [index],
        pop_classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_pop_y[index * batch_size:(index + 1) * batch_size]
        })

    train_pop_model = function(
        [index],
        pop_cost,
        updates=pop_grad_updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_pop_y[index * batch_size:(index + 1) * batch_size]
        })

    # event type model
    val_type_model = function(
        [index],
        type_classifier.errors(y),
        givens={
            x: val_set_x[index * batch_size:(index + 1) * batch_size],
            y: val_set_type_y[index * batch_size:(index + 1) * batch_size]
        })

    test_type_model = function(
        [index],
        type_classifier.errors(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_type_y[index * batch_size:(index + 1) * batch_size]
        })

    real_test_type_model = function(
        [index],
        type_classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_type_y[index * batch_size:(index + 1) * batch_size]
        })

    train_type_model = function(
        [index],
        type_cost,
        updates=type_grad_updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_type_y[index * batch_size:(index + 1) * batch_size]
        })
    """
    test_pred_layers = []
    test_size = test_set_x.shape[0]
    test_layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape((test_size, 1, input_height, input_width))
    for conv_layer in conv_layers:
        test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
        test_pred_layers.append(test_layer0_output.flatten(2))

    test_layer1_input = T.concatenate(test_pred_layers, 1)

    test_pop_y_pred = pop_classifier.predict(test_layer1_input)
    test_pop_error = T.mean(T.neq(test_pop_y_pred, y))
    test_pop_model_all = function([x, y], test_pop_error)

    test_type_y_pred = type_classifier.predict(test_layer1_input)
    test_type_error = T.mean(T.neq(test_type_y_pred, y))
    test_type_model_all = function([x, y], test_type_error)
    """
    # start to training the model
    print "Start training the model...."
    epoch = 0
    best_pop_val_perf = 0
    best_type_val_perf = 0

    while (epoch < n_epochs):
        epoch += 1
        if shuffle_batch:
            for minibatch_index in np.random.permutation(
                    range(n_train_batches)):
                if minibatch_index % 10 == 0:
                    print minibatch_index
                cost_pop_epoch = train_pop_model(minibatch_index)
                set_zero(zero_vec)
                cost_type_epoch = train_type_model(minibatch_index)
                set_zero(zero_vec)
        else:
            for minibatch_index in xrange(n_train_batches):
                cost_pop_epoch = train_pop_model(minibatch_index)
                set_zero(zero_vec)
                cost_type_epoch = train_type_model(minibatch_index)
                set_zero(zero_vec)

        train_pop_losses = [test_pop_model(i) for i in xrange(n_train_batches)]
        train_pop_perf = 1 - np.mean(train_pop_losses)

        train_type_losses = [
            test_type_model(i) for i in xrange(n_train_batches)
        ]
        train_type_perf = 1 - np.mean(train_type_losses)

        val_pop_losses = [val_pop_model(i) for i in xrange(n_val_batches)]
        val_pop_perf = 1 - np.mean(val_pop_losses)

        val_type_losses = [val_type_model(i) for i in xrange(n_val_batches)]
        val_type_perf = 1 - np.mean(val_type_losses)

        print('epoch %i, train pop perf %f %%, val pop perf %f' %
              (epoch, train_pop_perf * 100., val_pop_perf * 100.))
        print('epoch %i, train type perf %f %%, val type perf %f' %
              (epoch, train_type_perf * 100., val_type_perf * 100.))

        if val_pop_perf >= best_pop_val_perf:
            best_pop_val_perf = val_pop_perf
            #test_pop_losses = test_pop_model_all(test_set_x, test_set_pop_y)
            test_pop_losses = [
                real_test_pop_model(i) for i in xrange(n_test_batches)
            ]
            test_pop_perf = 1 - np.mean(test_pop_losses)
            print "Test POP Performance %f under Current Best Valid perf %f" % (
                test_pop_perf, val_pop_perf)

        if val_type_perf >= best_type_val_perf:
            best_type_val_perf = val_type_perf
            #test_type_losses = test_type_model_all(test_set_x, test_set_type_y)
            test_type_losses = [
                real_test_type_model(i) for i in xrange(n_test_batches)
            ]
            test_type_perf = 1 - np.mean(test_type_losses)
            print "Test Type Performance %f under Current Best Valid perf %f" % (
                test_type_perf, val_type_perf)

        end_time = timeit.default_timer()
        print "Epoch %d finish take time %fm " % (epoch,
                                                  (end_time - start_time) /
                                                  60.)
        start_time = timeit.default_timer()

    return test_pop_perf, test_type_perf
Ejemplo n.º 4
0
def run_cnn(exp_name,
            dataset,
            embedding,
            log_fn,
            perf_fn,
            emb_dm=100,
            batch_size=100,
            filter_hs=[1, 2, 3],
            hidden_units=[200, 100, 11],
            dropout_rate=0.5,
            shuffle_batch=True,
            n_epochs=300,
            lr_decay=0.95,
            activation=ReLU,
            sqr_norm_lim=9,
            non_static=True,
            sen_weight=False):
    """
    Train and Evaluate CNN event encoder model
    :dataset: list containing three elements[(train_x, train_y), 
            (valid_x, valid_y), (test_x, test_y)]
    :embedding: word embedding with shape (|V| * emb_dm)
    :filter_hs: filter height for each paralle cnn layer
    :dropout_rate: dropout rate for full connected layers
    :n_epochs: the max number of iterations
    
    """
    start_time = timeit.default_timer()
    rng = np.random.RandomState(1234)

    input_height = len(dataset[0][0][0][0])  # number of words in the sentences
    num_sens = len(dataset[0][0][0])  # number of sentences
    print "--input height ", input_height
    input_width = emb_dm
    num_maps = hidden_units[0]

    ###################
    # start snippet 1 #
    ###################
    print "start to construct the model ...."
    x = T.tensor3("x")
    y = T.ivector("y")

    words = shared(value=np.asarray(embedding, dtype=theano.config.floatX),
                   name="embedding",
                   borrow=True)

    # define function to keep padding vector as zero
    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(input_width, dtype=theano.config.floatX)
    set_zero = function([zero_vector_tensor],
                        updates=[(words,
                                  T.set_subtensor(words[0, :],
                                                  zero_vector_tensor))])

    # the input for the sentence level conv layers
    layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape(
        (x.shape[0] * x.shape[1], 1, x.shape[2], emb_dm))

    conv_layers = []
    layer1_inputs = []

    for i in xrange(len(filter_hs)):
        filter_shape = (num_maps, 1, filter_hs[i], emb_dm)
        pool_size = (input_height - filter_hs[i] + 1, 1)
        conv_layer = nn.ConvPoolLayer(rng,
                                      input=layer0_input,
                                      input_shape=None,
                                      filter_shape=filter_shape,
                                      pool_size=pool_size,
                                      activation=activation)

        sen_vecs = conv_layer.output.reshape(
            (x.shape[0], x.shape[1], num_maps))
        sen_vecs = sen_vecs.dimshuffle(0, 2, 1)
        # construct the weighted sentences
        if sen_weight:  # using sentence weight
            #s_w = 1. / T.arange(1, x.shape[1] + 1)
            s_w = T.arange(1, x.shape[1] + 1)
            s_w = (1.0 * x.shape[0] - s_w) / T.sum(s_w)
            sen_vecs = sen_vecs * s_w

        # using max in each dimension to represent the document vec
        doc_vec = T.sum(sen_vecs, axis=2).flatten(2)
        layer1_inputs.append(doc_vec)
        conv_layers.append(conv_layer)
        """
        doc_filter_shape = (num_maps, 1, 2, num_maps)
        doc_pool_size = (num_sens - 2 + 1, 1)
        doc_conv_layer = nn.ConvPoolLayer(rng, input=sen_vecs, 
                input_shape=None,
                filter_shape=doc_filter_shape,
                pool_size=doc_pool_size,
                activation=activation)

        layer1_input = doc_conv_layer.output.flatten(2)
        conv_layers.append(conv_layer)
        conv_layers.append(doc_conv_layer)

        layer1_inputs.append(layer1_input)
        """

    layer1_input = T.concatenate(layer1_inputs, 1)

    ##############
    # classifier #
    ##############
    print "Construct classifier ...."
    hidden_units[0] = num_maps * len(filter_hs)
    model = nn.MLPDropout(rng,
                          input=layer1_input,
                          layer_sizes=hidden_units,
                          dropout_rates=[dropout_rate],
                          activations=[activation])

    params = model.params
    for conv_layer in conv_layers:
        params += conv_layer.params

    if non_static:
        params.append(words)

    cost = model.negative_log_likelihood(y)
    dropout_cost = model.dropout_negative_log_likelihood(y)
    grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6,
                                        sqr_norm_lim)

    #####################
    # Construct Dataset #
    #####################
    print "Copy data to GPU and constrct train/valid/test func"
    np.random.seed(1234)

    train_x, train_y = shared_dataset(dataset[0])
    valid_x, valid_y = shared_dataset(dataset[1])
    test_x, test_y = shared_dataset(dataset[2])

    n_train_batches = int(np.ceil(1.0 * len(dataset[0][0]) / batch_size))
    n_valid_batches = int(np.ceil(1.0 * len(dataset[1][0]) / batch_size))
    n_test_batches = int(np.ceil(1.0 * len(dataset[2][0]) / batch_size))

    #####################
    # Train model func #
    #####################
    index = T.iscalar()
    train_func = function(
        [index],
        cost,
        updates=grad_updates,
        givens={
            x: train_x[index * batch_size:(index + 1) * batch_size],
            y: train_y[index * batch_size:(index + 1) * batch_size]
        })

    valid_train_func = function(
        [index],
        cost,
        updates=grad_updates,
        givens={
            x: valid_x[index * batch_size:(index + 1) * batch_size],
            y: valid_y[index * batch_size:(index + 1) * batch_size]
        })

    train_pred = function(
        [index],
        model.preds,
        givens={x: train_x[index * batch_size:(index + 1) * batch_size]})

    valid_pred = function([index],
                          model.preds,
                          givens={
                              x:
                              valid_x[index * batch_size:(index + 1) *
                                      batch_size],
                          })

    test_pred = function([index],
                         model.preds,
                         givens={
                             x:
                             test_x[index * batch_size:(index + 1) *
                                    batch_size],
                         })

    # apply early stop strategy
    patience = 100
    patience_increase = 2
    improvement_threshold = 1.005

    n_valid = len(dataset[1][0])
    n_test = len(dataset[2][0])

    epoch = 0
    best_params = None
    best_validation_score = 0.
    test_perf = 0

    done_loop = False

    log_file = open(log_fn, 'a')

    print "Start to train the model....."
    cpu_trn_y = np.asarray(dataset[0][1])
    cpu_val_y = np.asarray(dataset[1][1])
    cpu_tst_y = np.asarray(dataset[2][1])

    def compute_score(true_list, pred_list):
        mat = np.equal(true_list, pred_list)
        score = np.mean(mat)
        return score

    best_test_score = 0.
    while (epoch < n_epochs) and not done_loop:
        start_time = timeit.default_timer()
        epoch += 1
        costs = []
        for minibatch_index in np.random.permutation(range(n_train_batches)):
            cost_epoch = train_func(minibatch_index)
            costs.append(cost_epoch)
            set_zero(zero_vec)

        # do validatiovalidn
        valid_cost = [
            valid_train_func(i)
            for i in np.random.permutation(xrange(n_valid_batches))
        ]

        if epoch % 5 == 0:
            # do test
            test_preds = np.concatenate(
                [test_pred(i) for i in xrange(n_test_batches)])
            test_score = compute_score(cpu_tst_y, test_preds)

            with open(os.path.join(perf_fn, "%s_%d.pred" % (exp_name, epoch)),
                      'w') as epf:
                for p in test_preds:
                    epf.write("%d\n" % int(p))
                message = "Epoch %d test perf %f" % (epoch, test_score)
            print message
            log_file.write(message + "\n")
            log_file.flush()

            # store the best model
            if test_score > best_test_score:
                best_test_score = test_score
                # save the model
                model_name = "%s_%d.model" % (exp_name, epoch)
                with open(model_name, 'wb') as bm:
                    for p in params:
                        cPickle.dump(p.get_value(), bm)

        end_time = timeit.default_timer()
        print "Finish one iteration using %f m" % (
            (end_time - start_time) / 60.)

    log_file.flush()
    log_file.close()
Ejemplo n.º 5
0
def run_cnn(exp_name,
        dataset, embedding,
        log_fn, perf_fn,
        k=0,
        emb_dm=100,
        batch_size=100,
        filter_hs=[1, 2, 3],
        hidden_units=[200, 100, 11],
        dropout_rate=0.5,
        shuffle_batch=True,
        n_epochs=300,
        lr_decay=0.95,
        activation=ReLU,
        sqr_norm_lim=9,
        non_static=True,
        print_freq=5):
    """
    Train and Evaluate CNN event encoder model
    :dataset: list containing three elements[(train_x, train_y), 
            (valid_x, valid_y), (test_x, test_y)]
    :embedding: word embedding with shape (|V| * emb_dm)
    :filter_hs: filter height for each paralle cnn layer
    :dropout_rate: dropout rate for full connected layers
    :n_epochs: the max number of iterations
    
    """
    start_time = timeit.default_timer()
    rng = np.random.RandomState(1234)
   
    input_height = len(dataset[0][0][0][0])
    num_sens = len(dataset[0][0][0])
    print "--input height ", input_height 
    input_width = emb_dm
    num_maps = hidden_units[0]

    ###################
    # start snippet 1 #
    ###################
    print "start to construct the model ...."
    x = T.tensor3("x")
    y_type = T.ivector("y_type")
    y_pop = T.ivector("y_pop")

    words = shared(value=np.asarray(embedding,
        dtype=theano.config.floatX), 
        name="embedding", borrow=True)

    # define function to keep padding vector as zero
    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(input_width, dtype=theano.config.floatX)
    set_zero = function([zero_vector_tensor],
            updates=[(words, T.set_subtensor(words[0,:], zero_vector_tensor))])

    layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape((
        x.shape[0] * x.shape[1], 1, x.shape[2], emb_dm
        ))

    conv_layers = []
    layer1_inputs = []

    for i in xrange(len(filter_hs)):
        filter_shape = (num_maps, 1, filter_hs[i], emb_dm)
        pool_size = (input_height - filter_hs[i] + 1, 1)
        conv_layer = nn.ConvPoolLayer(rng, input=layer0_input, 
                input_shape=None,
                filter_shape=filter_shape,
                pool_size=pool_size, activation=activation)
        sen_vecs = conv_layer.output.reshape((x.shape[0], 1, x.shape[1], num_maps))
        # construct multi-layer sentence vectors

        conv_layers.append(conv_layer)
        layer1_inputs.append(sen_vecs)
    
    sen_vec = T.concatenate(layer1_inputs, 3)
    # score the sentences
    theta_value = np.random.random((len(filter_hs) * num_maps, 1))
    theta = shared(value=np.asarray(theta_value, dtype=theano.config.floatX),
            name="theta", borrow=True)
    weighted_sen_vecs, sen_score = keep_max(sen_vec, theta, k)
    doc_vec = T.max(weighted_sen_vecs, axis=2)
    layer1_input = doc_vec.flatten(2) 
    final_sen_score = sen_score.flatten(2)

    ##############
    # classifier pop#
    ##############
    print "Construct classifier ...."
    hidden_units[0] = num_maps * len(filter_hs)
    model = nn.MLPDropout(rng,
            input=layer1_input,
            layer_sizes=hidden_units,
            dropout_rates=[dropout_rate],
            activations=[activation])

    params = model.params
    for conv_layer in conv_layers:
        params += conv_layer.params

    params.append(theta)
    if non_static:
        params.append(words)

    cost = model.negative_log_likelihood(y_pop)
    dropout_cost = model.dropout_negative_log_likelihood(y_pop)

    #######################
    # classifier Type #####
    #######################
    type_hidden_units = [num for num in hidden_units]
    type_hidden_units[-1] = 5
    type_model = nn.MLPDropout(rng,
            input=layer1_input,
            layer_sizes=type_hidden_units,
            dropout_rates=[dropout_rate],
            activations=[activation])
    params += type_model.params

    type_cost = type_model.negative_log_likelihood(y_type)
    type_dropout_cost = type_model.dropout_negative_log_likelihood(y_type)

    total_cost = cost + type_cost
    total_dropout_cost = dropout_cost  + type_dropout_cost
    # using adagrad
    lr = 0.01
    """
    total_grad_updates = nn.optimizer(total_dropout_cost,
            params,
            lr,
            method="adadelta"
            )
    """
    total_grad_updates = sgd_updates_adadelta(params, 
            total_dropout_cost,
            lr_decay,
            1e-6,
            sqr_norm_lim)
    
    total_preds = [model.preds, type_model.preds]

    #####################
    # Construct Dataset #
    #####################
    print "Copy data to GPU and constrct train/valid/test func"
    np.random.seed(1234)
    
    train_x, train_pop_y, train_type_y = shared_dataset(dataset[0])
    test_x, test_pop_y, test_type_y = shared_dataset(dataset[1])

    n_train_batches = int(np.ceil(1.0 * len(dataset[0][0]) / batch_size))
    n_test_batches = int(np.ceil(1.0 * len(dataset[1][0]) / batch_size))

    #####################
    # Train model func #
    #####################
    index = T.iscalar()
    train_func = function([index], total_cost, updates=total_grad_updates,
            givens={
                x: train_x[index*batch_size:(index+1)*batch_size],
                y_pop: train_pop_y[index*batch_size:(index+1)*batch_size],
                y_type:train_type_y[index*batch_size:(index+1)*batch_size]
                })
    
    test_pred = function([index], total_preds,
            givens={
                x:test_x[index*batch_size:(index+1)*batch_size],
                })
    
    test_sentence_est = function([index], final_sen_score,
            givens={
                x: test_x[index*batch_size:(index+1)*batch_size]
                })
    
    train_sentence_est = function([index], final_sen_score,
            givens={
                x: train_x[index*batch_size:(index+1)*batch_size]
                })


    # apply early stop strategy
    patience = 100
    patience_increase = 2
    improvement_threshold = 1.005
    
    n_test = len(dataset[1][0])

    epoch = 0
    best_params = None
    best_validation_score = 0.
    test_perf = 0

    done_loop = False
    
    log_file = open(log_fn, 'w')

    print "Start to train the model....."
    cpu_tst_pop_y = np.asarray(dataset[1][1])
    cpu_tst_type_y = np.asarray(dataset[1][2])

    def compute_score(true_list, pred_list):
        mat = np.equal(true_list, pred_list)
        score = np.mean(mat)
        return score
    
    total_score = 0.0
    while (epoch < n_epochs) and not done_loop:
        start_time = timeit.default_timer()
        epoch += 1
        costs = []
        for minibatch_index in np.random.permutation(range(n_train_batches)):
            cost_epoch = train_func(minibatch_index)
            costs.append(cost_epoch)
            set_zero(zero_vec)
        

        if epoch % print_freq == 0:
            # do test
            test_pop_preds, test_type_preds = map(np.concatenate, zip(*[test_pred(i) for i in xrange(n_test_batches)]))
            test_pop_score = compute_score(cpu_tst_pop_y, test_pop_preds)
            test_type_score = compute_score(cpu_tst_type_y, test_type_preds)
            
            with open(os.path.join(perf_fn, "%s_%d.pop_pred" % (exp_name, epoch)), 'w') as epf:
                for p in test_pop_preds:
                    epf.write("%d\n" % int(p))

            with open(os.path.join(perf_fn, "%s_%d.type_pred" % (exp_name, epoch)), 'w') as epf:
                for p in test_type_preds:
                    epf.write("%d\n" % int(p))
            
            message = "Epoch %d test pop perf %f, type perf %f" % (epoch, test_pop_score, test_type_score)
            print message
            log_file.write(message + "\n")
            log_file.flush()

            if ((test_pop_score + test_type_score) > total_score) or (epoch % 15 == 0):
                total_score = test_pop_score + test_type_score
                # save the sentence score
                test_sen_score = [test_sentence_est(i) for i in xrange(n_test_batches)]
                score_file = "./results/%s_%d_test.score" % (exp_name, epoch)
                with open(score_file, "wb") as sm:
                    cPickle.dump(test_sen_score, sm)
                
                train_sen_score = [train_sentence_est(i) for i in xrange(n_train_batches)]
                score_file = "./results/%s_%d_train.score" % (exp_name, epoch)
                with open(score_file, "wb") as sm:
                    cPickle.dump(train_sen_score, sm)

        end_time = timeit.default_timer()
        print "Finish one iteration using %f m" % ((end_time - start_time)/60.)

    log_file.flush()
    log_file.close()
Ejemplo n.º 6
0
def train_cnn_encoder(datasets, word_embedding, input_width=64,
                      filter_hs=[3, 4, 5],
                      hidden_units=[100, 2],
                      dropout_rate=[0.5],
                      shuffle_batch=True,
                      n_epochs=100,
                      batch_size=50,
                      lr_decay=0.95,
                      activations=[ReLU],
                      sqr_norm_lim=9,
                      non_static=True):
    rng = np.random.RandomState(1234)
    input_height = len(datasets[0][0]) - 1
    filter_width = input_width
    feature_maps = hidden_units[0]
    filter_shapes = []
    pool_sizes = []
    for filter_h in filter_hs:
        filter_shapes.append((feature_maps, 1, filter_h, filter_width))
        pool_sizes.append((input_height-filter_h+1, input_width-filter_width+1))

    parameters = [("Input Shape", input_height, input_width),
                  ("Filter Shape", filter_shapes),
                  ("Pool Sizes", pool_sizes),
                  ("dropout rate", dropout_rate),
                  ("hidden units", hidden_units),
                  ("shuffle_batch", shuffle_batch),
                  ("n_epochs", n_epochs),
                  ("batch size", batch_size)]
    print parameters

    # construct the model
    index = T.iscalar()
    x = T.matrix("x")
    y = T.ivector("y")
    words = shared(value=word_embedding, name="embedding")

    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(input_width)
    set_zero = function([zero_vector_tensor], updates=[(words, T.set_subtensor(words[0,:], zero_vector_tensor))])

    layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape((x.shape[0],1,x.shape[1],words.shape[1]))

    conv_layers = []
    layer1_inputs = []
    for i in xrange(len(filter_hs)):
        filter_shape = filter_shapes[i]
        pool_size = pool_sizes[i]
        conv_layer = nn.ConvPoolLayer(rng, input=layer0_input,
            input_shape=(batch_size, 1, input_height, input_width),
            filter_shape=filter_shape,
            pool_size=pool_size, activation=ReLU)
        layer1_input = conv_layer.output.flatten(2)
        conv_layers.append(conv_layer)
        layer1_inputs.append(layer1_input)

    layer1_input = T.concatenate(layer1_inputs, 1)

    hidden_units[0] = feature_maps * len(filter_hs)

    classifier = nn.MLPDropout(rng,
        input=layer1_input,
        layer_sizes=hidden_units,
        dropout_rates=dropout_rate,
        activations=activations)

    params = classifier.params
    for conv_layer in conv_layers:
        params += conv_layer.params

    if non_static:
        params.append(words)


    cost = classifier.negative_log_likelihood(y)
    dropout_cost = classifier.dropout_negative_log_likelihood(y)

    grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6, sqr_norm_lim)

    np.random.seed(1234)
    if datasets[0].shape[0] % batch_size > 0:
        extra_data_num = batch_size - datasets[0].shape[0] % batch_size
        train_set = np.random.permutation(datasets[0])
        extra_data = train_set[:extra_data_num]
        new_data = np.append(datasets[0], extra_data, axis=0)
    else:
        new_data = datasets[0]

    new_data = np.random.permutation(new_data)
    n_batches = new_data.shape[0]/batch_size
    n_train_batches = int(np.round(n_batches*0.9))

    # divide the train set intp train/val sets
    test_set_x = datasets[1][:,:input_height]
    test_set_y = np.asarray(datasets[1][:,-1], "int32")

    train_set = new_data[:n_train_batches*batch_size,:]
    val_set = new_data[n_train_batches*batch_size:,:]
    print train_set[:,-1]
    train_set_x, train_set_y = shared_dataset((train_set[:,:input_height],train_set[:,-1]))
    val_set_x, val_set_y = shared_dataset((val_set[:,:input_height],val_set[:,-1]))

    n_val_batches = n_batches - n_train_batches
    val_model = function([index], classifier.errors(y),
        givens={
            x: val_set_x[index * batch_size: (index + 1) * batch_size],
            y: val_set_y[index * batch_size: (index + 1) * batch_size]
        })

    test_model = function([index], classifier.errors(y),
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        })

    train_model = function([index], cost, updates=grad_updates,
        givens={
            x: train_set_x[index*batch_size:(index+1)*batch_size],
            y: train_set_y[index*batch_size:(index+1)*batch_size]
        })

    test_pred_layers = []
    test_size = test_set_x.shape[0]
    test_layer0_input = words[T.cast(x.flatten(), dtype="int32")].reshape((test_size, 1, input_height, input_width))
    for conv_layer in conv_layers:
        test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
        test_pred_layers.append(test_layer0_output.flatten(2))

    test_layer1_input = T.concatenate(test_pred_layers, 1)
    test_y_pred = classifier.predict(test_layer1_input)
    test_error = T.mean(T.neq(test_y_pred, y))
    test_model_all = function([x, y], test_error)

    # start to training the model
    print "Start training the model...."
    epoch = 0
    best_val_perf = 0
    val_perf = 0
    cost_epoch = 0
    while(epoch < n_epochs):
        epoch += 1
        if shuffle_batch:
            for minibatch_index in np.random.permutation(range(n_train_batches)):
                print minibatch_index
                cost_epoch = train_model(minibatch_index)
                set_zero(zero_vec)
        else:
            for minibatch_index in xrange(n_train_batches):
                cost_epoch = train_model(minibatch_index)
                set_zero(zero_vec)
        train_losses = [test_model(i) for i in xrange(n_train_batches)]
        train_perf = 1 - np.mean(train_losses)
        
        val_losses = [val_model(i) for i in xrange(n_val_batches)]
        val_perf = 1 - np.mean(val_losses)
        print('epoch %i, train perf %f %%, val perf %f' % (epoch, train_perf * 100., val_perf*100.))

        if val_perf >= best_val_perf:
            best_val_perf = val_perf
            test_losses = test_model_all(test_set_x, test_set_y)
            test_perf = 1 - test_losses
            print "Test Performance %f under Current Best Valid perf %f" % (test_perf, val_perf)

    return test_perf
Ejemplo n.º 7
0
def run_cnn(exp_name,
            dataset,
            embedding,
            log_fn,
            perf_fn,
            emb_dm=100,
            batch_size=100,
            filter_hs=[1, 2, 3],
            hidden_units=[200, 100, 11],
            dropout_rate=0.5,
            shuffle_batch=True,
            n_epochs=300,
            lr_decay=0.95,
            activation=ReLU,
            sqr_norm_lim=9,
            non_static=True,
            alpha=0.0001):
    """
    Train and Evaluate CNN event encoder model
    :dataset: list containing three elements[(train_x, train_y), 
            (valid_x, valid_y), (test_x, test_y)]
    :embedding: word embedding with shape (|V| * emb_dm)
    :filter_hs: filter height for each paralle cnn layer
    :dropout_rate: dropout rate for full connected layers
    :n_epochs: the max number of iterations
    
    """
    start_time = timeit.default_timer()

    input_height = len(dataset[0][0][0])
    print "--input height ", input_height
    input_width = emb_dm
    num_maps = hidden_units[0]

    ###################
    # start snippet 1 #
    ###################
    print "start to construct the model ...."
    word_x = T.matrix("word_x")
    freq_x = T.matrix("freq_x")
    pos_x = T.matrix("pos_x")

    y = T.ivector("y")

    words = shared(value=np.asarray(embedding, dtype=theano.config.floatX),
                   name="embedding",
                   borrow=True)

    sym_dim = 20
    # the frequency embedding is 21 * 50 matrix
    freq_val = np.random.random((21, sym_dim))
    freqs = shared(value=np.asarray(freq_val, dtype=theano.config.floatX),
                   borrow=True,
                   name="freqs")

    # the position embedding is 31 * 50 matrix
    poss_val = np.random.random((31, sym_dim))
    poss = shared(value=np.asarray(poss_val, dtype=theano.config.floatX),
                  borrow=True,
                  name="poss")

    # define function to keep padding vector as zero
    zero_vector_tensor = T.vector()
    zero_vec = np.zeros(input_width, dtype=theano.config.floatX)
    set_zero = function([zero_vector_tensor],
                        updates=[(words,
                                  T.set_subtensor(words[0, :],
                                                  zero_vector_tensor))])

    freq_zero_tensor = T.vector()
    freq_zero_vec = np.zeros(sym_dim, dtype=theano.config.floatX)
    freq_set_zero = function([freq_zero_tensor],
                             updates=[(freqs,
                                       T.set_subtensor(freqs[0, :],
                                                       freq_zero_tensor))])

    pos_zero_tensor = T.vector()
    pos_zero_vec = np.zeros(sym_dim, dtype=theano.config.floatX)
    pos_set_zero = function([pos_zero_tensor],
                            updates=[(poss,
                                      T.set_subtensor(poss[0, :],
                                                      pos_zero_tensor))])

    word_x_emb = words[T.cast(word_x.flatten(), dtype="int32")].reshape(
        (word_x.shape[0], 1, word_x.shape[1], emb_dm))
    freq_x_emb = freqs[T.cast(freq_x.flatten(), dtype="int32")].reshape(
        (freq_x.shape[0], 1, freq_x.shape[1], sym_dim))
    pos_x_emb = poss[T.cast(pos_x.flatten(), dtype="int32")].reshape(
        (pos_x.shape[0], 1, pos_x.shape[1], sym_dim))

    layer0_input = T.concatenate([word_x_emb, freq_x_emb, pos_x_emb], axis=3)

    conv_layers = []
    layer1_inputs = []
    rng = np.random.RandomState()
    for i in xrange(len(filter_hs)):
        filter_shape = (num_maps, 1, filter_hs[i], emb_dm + sym_dim + sym_dim)
        pool_size = (input_height - filter_hs[i] + 1, 1)
        conv_layer = nn.ConvPoolLayer(rng,
                                      input=layer0_input,
                                      input_shape=None,
                                      filter_shape=filter_shape,
                                      pool_size=pool_size,
                                      activation=activation)
        layer1_input = conv_layer.output.flatten(2)
        conv_layers.append(conv_layer)
        layer1_inputs.append(layer1_input)

    layer1_input = T.concatenate(layer1_inputs, 1)

    ##############
    # classifier #
    ##############
    print "Construct classifier ...."
    hidden_units[0] = num_maps * len(filter_hs)
    model = nn.MLPDropout(rng,
                          input=layer1_input,
                          layer_sizes=hidden_units,
                          dropout_rates=[dropout_rate],
                          activations=[activation])

    params = model.params
    for conv_layer in conv_layers:
        params += conv_layer.params

    params.append(words)
    params.append(freqs)
    params.append(poss)

    cost = model.negative_log_likelihood(y) + alpha * model.L2
    dropout_cost = model.dropout_negative_log_likelihood(y) + alpha * model.L2

    grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6,
                                        sqr_norm_lim)

    #####################
    # Construct Dataset #
    #####################
    print "Copy data to GPU and constrct train/valid/test func"

    train_word_x, train_freq_x, train_pos_x, train_y = shared_dataset(
        dataset[0])
    test_word_x, test_freq_x, test_pos_x, test_y = shared_dataset(dataset[1])

    n_train_batches = int(np.ceil(1.0 * len(dataset[0][0]) / batch_size))
    n_test_batches = int(np.ceil(1.0 * len(dataset[1][0]) / batch_size))

    #####################
    # Train model func #
    #####################
    index = T.iscalar()
    train_func = function(
        [index],
        cost,
        updates=grad_updates,
        givens={
            word_x: train_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: train_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: train_pos_x[index * batch_size:(index + 1) * batch_size],
            y: train_y[index * batch_size:(index + 1) * batch_size]
        })

    test_pred = function(
        [index],
        model.preds,
        givens={
            word_x: test_word_x[index * batch_size:(index + 1) * batch_size],
            freq_x: test_freq_x[index * batch_size:(index + 1) * batch_size],
            pos_x: test_pos_x[index * batch_size:(index + 1) * batch_size]
        })

    # apply early stop strategy
    patience = 100
    patience_increase = 2
    improvement_threshold = 1.005

    n_test = len(dataset[1][0])

    epoch = 0
    best_params = None
    best_validation_score = 0.
    test_perf = 0

    done_loop = False

    log_file = open(log_fn, 'a')

    print "Start to train the model....."
    cpu_trn_y = np.asarray(dataset[0][3])
    cpu_tst_y = np.asarray(dataset[1][3])

    def compute_score(true_list, pred_list):
        mat = np.equal(true_list, pred_list)
        score = np.mean(mat)
        return score

    while (epoch < n_epochs) and not done_loop:
        start_time = timeit.default_timer()
        epoch += 1
        costs = []
        for minibatch_index in np.random.permutation(range(n_train_batches)):
            cost_epoch = train_func(minibatch_index)
            costs.append(cost_epoch)
            set_zero(zero_vec)
            freq_set_zero(freq_zero_vec)
            pos_set_zero(pos_zero_vec)

        if epoch % 5 == 0:
            # do test
            test_preds = np.concatenate(
                [test_pred(i) for i in xrange(n_test_batches)])
            test_score = compute_score(cpu_tst_y, test_preds)

            with open(os.path.join(perf_fn, "%s_%d.pred" % (exp_name, epoch)),
                      'w') as epf:
                for p in test_preds:
                    epf.write("%d\n" % int(p))
                message = "Epoch %d test perf %f with train cost %f" % (
                    epoch, test_score, np.mean(costs))
            print message
            log_file.write(message + "\n")
            log_file.flush()

        end_time = timeit.default_timer()
        print "Finish one iteration using %f m" % (
            (end_time - start_time) / 60.)

    log_file.flush()
    log_file.close()