Ejemplo n.º 1
0
                        for [
                                k_conv, n_conv1, n_conv2, n_lstm, n_layer,
                                test_frac, val_frac, batch_frac, n_sensors,
                                n_dipoles
                        ] in params_list:

                            if cnn is 'fft' or subject_id is 'rat':
                                n_chan_in = 1
                            else:
                                n_chan_in = 2

                            if subject_id is 'aud':
                                meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.aud_dataset(
                                    justdims=True,
                                    cnn=cnn,
                                    locate=locate,
                                    treat=None)
                                meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.aud_dataset(
                                    justdims=True,
                                    cnn=cnn,
                                    locate=locate,
                                    treat=treat,
                                    Wt=Wt)
                            elif subject_id is 'rat':
                                total_batch_size = 1000
                                delT = 1e-2
                                n_steps = 100
                                meas_dims_in = [n_sensors, 1]
                                dipole_dims = [1, 1, n_dipoles]
                                if cnn is True:
Ejemplo n.º 2
0
    print num
    return ax, fig


pca = True
subsample = 1
pca = True
cnn = True
locate = 95

subject_id = 7

if subject_id is 'aud':
    treats = [
        None
    ]  #, 'left/auditory', 'right/auditory', 'left/visual', 'right/visual']
else:
    treats = [None]  #, 'face/famous','scrambled','face/unfamiliar']
nummax = len(treats)
ax = None
fig = None
num = 0
for treat in treats:
    if subject_id is 'aud':
        meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.aud_dataset(
            justdims=True, cnn=cnn, locate=locate, treat=treat)
    else:
        meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.faces_dataset(
            subject_id, cnn=cnn, justdims=True, locate=locate, treat=treat)