Ejemplo n.º 1
0
def fusion_gate(rep1, rep2, wd, keep_prob, is_train):
    ivec = rep1.get_shape().as_list()[1]
    with tf.variable_scope('output'):
        o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                 tf.constant_initializer(0.))
        # input gate
        fusion_g = tf.nn.sigmoid(
            linear(rep1, ivec, True, 0., 'linear_fusion_i', False, wd,
                   keep_prob, is_train) +
            linear(rep2, ivec, True, 0., 'linear_fusion_a', False, wd,
                   keep_prob, is_train) + o_bias)
        output = fusion_g * rep1 + (1 - fusion_g) * rep2
    return output
Ejemplo n.º 2
0
def normal_attention(rep_tensor,
                     rep_mask,
                     scope=None,
                     keep_prob=1.,
                     is_train=None,
                     wd=0.,
                     activation='elu',
                     tensor_dict=None,
                     name=None):
    batch_size, code_len, vec_size = tf.shape(rep_tensor)[0], tf.shape(
        rep_tensor)[1], tf.shape(rep_tensor)[2]
    ivec = rep_tensor.get_shape()[2]
    with tf.variable_scope(scope or 'normal_attention'):
        rep_tensor_map = bn_dense_layer(rep_tensor, ivec, True, 0.,
                                        'bn_dense_map', activation, False, wd,
                                        keep_prob, is_train)

        rep_tensor_logits = get_logits([rep_tensor_map],
                                       None,
                                       False,
                                       scope='self_attn_logits',
                                       mask=rep_mask,
                                       input_keep_prob=keep_prob,
                                       is_train=is_train)  # bs,sl
        attn_result = softsel(rep_tensor, rep_tensor_logits,
                              rep_mask)  # bs,vec

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name] = tf.nn.softmax(rep_tensor_logits)

        with tf.variable_scope('output'):
            o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            # input gate
            fusion_gate = tf.nn.sigmoid(
                linear(rep_tensor_map, ivec, True, 0., 'linear_fusion_i',
                       False, wd, keep_prob, is_train) +
                linear(attn_result, ivec, True, 0., 'linear_fusion_a', False,
                       wd, keep_prob, is_train) + o_bias)
            output = fusion_gate * rep_tensor_map + (1 -
                                                     fusion_gate) * attn_result
            output = mask_for_high_rank(output, rep_mask)  # bs,sl,vec
        return output
Ejemplo n.º 3
0
def visit_sa_with_dense(rep_tensor,
                        keep_prob=1.,
                        is_train=None,
                        wd=0.,
                        activation='relu',
                        hn=None,
                        is_scale=True,
                        is_plus_sa=True):

    batch_size, sw_len, vec_size = tf.shape(rep_tensor)[0], tf.shape(
        rep_tensor)[1], tf.shape(rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or ivec
    with tf.variable_scope('temporal_attention'):
        # mask generation
        attn_mask = tf.cast(
            tf.diag(-tf.ones([sw_len], tf.int32)) + 1,
            tf.bool)  # batch_size, code_len, code_len

        # non-linear for context
        rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map',
                                 activation, False, wd, keep_prob, is_train)
        rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1),
                               [1, sw_len, 1, 1])  # bs,sl,sl,vec
        rep_map_dp = dropout(rep_map, keep_prob, is_train)

        # attention
        with tf.variable_scope('attention'):  # bs,sl,sl,vec

            f_bias = tf.get_variable('f_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            dependent = linear(
                rep_map_dp, ivec, False,
                scope='linear_dependent')  # batch_size, code_len, vec_size
            dependent_etd = tf.expand_dims(
                dependent, 1)  # batch_size, code_len,code_len, vec_size
            head = linear(
                rep_map_dp, ivec, False,
                scope='linear_head')  # batch_size, code_len, vec_size
            head_etd = tf.expand_dims(
                head, 2)  # batch_size, code_len,code_len, vec_size

            if is_plus_sa:
                attention_fact = dependent_etd + head_etd + f_bias
            else:
                return rep_map

            if is_scale:
                logits = scaled_tanh(attention_fact, 5.0)  # bs,sl,sl,vec
            else:
                logits = linear(tf.nn.tanh(attention_fact),
                                ivec,
                                True,
                                scope='linear_attn_fact')

            logits_masked = exp_mask_for_high_rank(logits, attn_mask)
            attn_score = tf.nn.softmax(logits_masked, 2)  # bs,sl,sl,vec
            attn_score = mask_for_high_rank(attn_score, attn_mask)

            attn_result = tf.reduce_sum(attn_score * rep_map_tile,
                                        2)  # bs,sl,vec

        with tf.variable_scope('output'):
            o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            # input gate
            fusion_gate = tf.nn.sigmoid(
                linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd,
                       keep_prob, is_train) +
                linear(attn_result, ivec, True, 0., 'linear_fusion_a', False,
                       wd, keep_prob, is_train) + o_bias)
            output = fusion_gate * rep_map + (1 - fusion_gate) * attn_result

        return output
Ejemplo n.º 4
0
def directional_attention_with_dense(rep_tensor,
                                     rep_mask,
                                     direction=None,
                                     scope=None,
                                     keep_prob=1.,
                                     is_train=None,
                                     wd=0.,
                                     activation='elu',
                                     tensor_dict=None,
                                     name=None,
                                     hn=None):

    bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(
        rep_tensor)[2]
    ivec = rep_tensor.get_shape().as_list()[2]
    ivec = hn or ivec
    with tf.variable_scope(scope or 'directional_attention_%s' % direction
                           or 'diag'):
        # mask generation
        sl_indices = tf.range(sl, dtype=tf.int32)
        sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices)
        if direction is None:
            direct_mask = tf.cast(
                tf.diag(-tf.ones([sl], tf.int32)) + 1, tf.bool)
        else:
            if direction == 'forward':
                direct_mask = tf.greater(sl_row, sl_col)
            else:
                direct_mask = tf.greater(sl_col, sl_row)
        direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0),
                                   [bs, 1, 1])  # bs,sl,sl
        rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1),
                                [1, sl, 1])  # bs,sl,sl
        attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile)  # bs,sl,sl

        # non-linear
        rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map',
                                 activation, False, wd, keep_prob, is_train)
        rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1),
                               [1, sl, 1, 1])  # bs,sl,sl,vec
        rep_map_dp = dropout(rep_map, keep_prob, is_train)

        # attention
        with tf.variable_scope('attention'):  # bs,sl,sl,vec
            f_bias = tf.get_variable('f_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            dependent = linear(rep_map_dp,
                               ivec,
                               False,
                               scope='linear_dependent')  # bs,sl,vec
            dependent_etd = tf.expand_dims(dependent, 1)  # bs,1,sl,vec
            head = linear(rep_map_dp, ivec, False,
                          scope='linear_head')  # bs,sl,vec
            head_etd = tf.expand_dims(head, 2)  # bs,sl,1,vec

            logits = scaled_tanh(dependent_etd + head_etd + f_bias,
                                 5.0)  # bs,sl,sl,vec

            logits_masked = exp_mask_for_high_rank(logits, attn_mask)
            attn_score = tf.nn.softmax(logits_masked, 2)  # bs,sl,sl,vec
            attn_score = mask_for_high_rank(attn_score, attn_mask)

            attn_result = tf.reduce_sum(attn_score * rep_map_tile,
                                        2)  # bs,sl,vec

        with tf.variable_scope('output'):
            o_bias = tf.get_variable('o_bias', [ivec], tf.float32,
                                     tf.constant_initializer(0.))
            # input gate
            fusion_gate = tf.nn.sigmoid(
                linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd,
                       keep_prob, is_train) +
                linear(attn_result, ivec, True, 0., 'linear_fusion_a', False,
                       wd, keep_prob, is_train) + o_bias)
            output = fusion_gate * rep_map + (1 - fusion_gate) * attn_result
            output = mask_for_high_rank(output, rep_mask)

        # save attn
        if tensor_dict is not None and name is not None:
            tensor_dict[name + '_dependent'] = dependent
            tensor_dict[name + '_head'] = head
            tensor_dict[name] = attn_score
            tensor_dict[name + '_gate'] = fusion_gate
        return output