Ejemplo n.º 1
0
def sample_pdf(bins, weights, N_samples, det=False):
    """Sample additional points for training fine network

    Args:
      bins: int. Height in pixels.
      weights: int. Width in pixels.
      N_samples: float. Focal length of pinhole camera.
      det

    Returns:
      samples: array of shape [batch_size, 3]. Depth samples for fine network
    """
    weights += 1e-5
    pdf = weights / F.sum(weights, axis=-1, keepdims=True)

    cdf = F.cumsum(pdf, axis=-1)
    # if isinstance(pdf, nn.Variable):
    #     cdf = nn.Variable.from_numpy_array(tf.math.cumsum(pdf.d, axis=-1))
    # else:
    #     cdf = nn.Variable.from_numpy_array(tf.math.cumsum(pdf.data, axis=-1)).data
    cdf = F.concatenate(F.constant(0, cdf[..., :1].shape), cdf, axis=-1)

    if det:
        u = F.arange(0., 1., 1 / N_samples)
        u = F.broadcast(u[None, :], cdf.shape[:-1] + (N_samples, ))
        u = u.data if isinstance(cdf, nn.NdArray) else u
    else:
        u = F.rand(shape=cdf.shape[:-1] + (N_samples, ))

    indices = F.searchsorted(cdf, u, right=True)
    # if isinstance(cdf, nn.Variable):
    #     indices = nn.Variable.from_numpy_array(
    #         tf.searchsorted(cdf.d, u.d, side='right').numpy())
    # else:
    #     indices = nn.Variable.from_numpy_array(
    #         tf.searchsorted(cdf.data, u.data, side='right').numpy())
    below = F.maximum_scalar(indices - 1, 0)
    above = F.minimum_scalar(indices, cdf.shape[-1] - 1)
    indices_g = F.stack(below, above, axis=below.ndim)
    cdf_g = F.gather(cdf,
                     indices_g,
                     axis=-1,
                     batch_dims=len(indices_g.shape) - 2)
    bins_g = F.gather(bins,
                      indices_g,
                      axis=-1,
                      batch_dims=len(indices_g.shape) - 2)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom = F.where(F.less_scalar(denom, 1e-5), F.constant(1, denom.shape),
                    denom)
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples
Ejemplo n.º 2
0
    def ray_march(self, camloc, raydir, t0, t1, N, n_chunks, t_argmin=False):
        # Points computation
        BR, _ = t0.shape
        t0 = F.reshape(t0, (BR, 1, 1))
        t1 = F.reshape(t1, (BR, 1, 1))
        camloc = F.reshape(camloc, (BR, 1, 3))
        raydir = F.reshape(raydir, (BR, 1, 3))
        step = (t1 - t0) / (N - 1)
        intervals = F.reshape(F.arange(0, N), (1, N, 1))
        ts = t0 + step * intervals
        points = camloc + ts * raydir
        points = F.reshape(points, (BR * N, 3))

        # SDF computation
        sdf_points = []
        batch = (BR * N) // n_chunks
        for r in range(0, BR * N, batch):
            sdf_points.append(self.sdf(points[r:r + batch, :]))
        sdf_points = F.reshape(F.concatenate(*sdf_points, axis=0), (BR, N, 1)) if n_chunks != 1 else \
            F.reshape(sdf_points[0], (BR, N, 1))

        # t_argmin computation
        if t_argmin:
            idx_min = F.min(sdf_points, axis=1, keepdims=True, only_index=True)
            t_argmin = F.reshape(F.gather(ts, idx_min, axis=1, batch_dims=1),
                                 (BR, 1))
            return t_argmin

        # Intersection check
        points = F.reshape(points, (BR, N, 3))
        sdf_pos = F.greater_equal_scalar(sdf_points[:, :-1, :], 0)
        sdf_neg = F.less_equal_scalar(sdf_points[:, 1:, :], 0)
        mask_hit = sdf_pos * sdf_neg

        decreasing_consts = F.reshape(F.arange(N, 1, -1), (1, N - 1, 1))
        vals = mask_hit * decreasing_consts
        idx_max = F.max(vals, axis=1, only_index=True)

        points = points[:, :-1, :]
        x_hit = F.gather(points, idx_max, axis=1, batch_dims=1)
        x_hit = F.reshape(x_hit, (BR, 3))
        mask_hit = F.greater_scalar(F.sum(mask_hit, axis=1), 0)
        mask_hit = F.reshape(mask_hit, (BR, 1))

        x_hit_rm0 = x_hit
        step = F.reshape(step, (BR, 1))
        raydir = F.reshape(raydir, (BR, 3))
        x_hit_rm1 = x_hit_rm0 + step * raydir

        return x_hit_rm0, x_hit_rm1, mask_hit
Ejemplo n.º 3
0
 def generate_z_anchor(self):
     z_anchor_list = []
     for _ in range(2):
         z_anchor_var = F.gather(
             self.init_z_var, combination(
                 self.n_train, self.batch_size)) + F.randn(
                     sigma=self.anch_std,
                     shape=(self.batch_size, self.latent_dim))
         z_anchor_list.append(z_anchor_var)
     return z_anchor_list
Ejemplo n.º 4
0
    def _extract(a, t, x_shape=None):
        """
        Extract some coefficients at specified timesteps.
        If x_shape is not None, 
        reshape the extracted one to [batch_size, 1, 1, 1, 1, ...] corrensponding to x_shape for broadcasting purposes.
        """

        B, = t.shape
        out = F.gather(a, t, axis=0)

        if x_shape is None:
            return out

        assert x_shape[0] == B
        assert out.shape == (B, )
        out_shape = np.array(list(x_shape))
        out_shape[1:] = 1
        return F.reshape(out, out_shape)
Ejemplo n.º 5
0
def pack_padded_sequence(padded_sequence,
                         lengths,
                         batch_first=False,
                         enforce_sorted=True):
    r"""Pack a padded variable-length sequences.

    This method packs a padded variable-length sequences.

    :math:`T` is the max length over the lengths of sequences.
    :math:`B` is the batch size equal to the length of the sequences.     
    :math:`*` is the remaining dimensions including none.

    .. note::
      This function **must** be used the dynamic computation mode.


    Example:

    .. code-block:: python

      import numpy as np
      import nnabla as nn
      import nnabla.functions as F
      import nnabla.utils.rnn as rnn_utils

      nn.set_auto_forward(True)

      l2v = lambda ldata: nn.Variable.from_numpy_array(np.asarray(ldata))
      a = l2v([1, 1, 1, 1])
      b = l2v([2, 2, 2])
      c = l2v([2, 2, 2])
      d = l2v([3, 3])
      e = l2v([3, 3])
      sequences = [a, b, c, d, e]
      lengths = l2v([seq.shape[0] for seq in sequences])

      padded_sequence = rnn_utils.pad_sequence(sequences)
      print(padded_sequence.d)

      packed_sequence = rnn_utils.pack_padded_sequence(padded_sequence, lengths)
      print(packed_sequence.data.d)
      print(packed_sequence.batch_sizes.d)

    Args: 
      padded_sequence (:obj:`nnabla.Variable`): Padded sequence of (:math:`T \times B \times *`)
                                                or (:math:`B \times T \times *`) shape.
      lengths (:obj:`nnabla.Variable`): Sequence length for each batch and always resides in CPU.
      batch_first (bool): `padded_sequence` is of (:math:`T`, :math:`B`, :math:`*`) shape if False,
                          otherwise (:math:`B`, :math:`T`, :math:`*`).
      enforce_sorted (bool): Sequences are sorted by the length in a decreasing order if True. Default is True.

    Returns: 
        :obj:`PackedSequence`
    """
    if enforce_sorted:
        sorted_indices = None
        unsorted_indices = None
    else:
        # TODO: replace cuda context when the bug fix of the sort
        with nn.context_scope(nn.Context()):
            lengths, sorted_indices = F.sort(lengths,
                                             axis=0,
                                             reverse=True,
                                             with_index=True)

        B = sorted_indices.shape[0]
        unsorted_indices = F.scatter_nd(F.arange(0, B),
                                        sorted_indices.reshape((1, B)),
                                        shape=(B, ))
        axis = 0 if batch_first else 1
        padded_sequence = F.gather(padded_sequence, sorted_indices, axis)

    packed_sequence, batch_sizes = F.pack_padded_sequence(
        padded_sequence, lengths, batch_first)
    packed_sequence0 = PackedSequence()
    packed_sequence0.data = packed_sequence
    packed_sequence0.batch_sizes = batch_sizes
    packed_sequence0.sorted_indices = sorted_indices
    packed_sequence0.unsorted_indices = unsorted_indices

    return packed_sequence0
Ejemplo n.º 6
0
def pad_packed_sequence(sequence,
                        batch_first=False,
                        padding_value=0.0,
                        total_length=None):
    """Pad packed sequence.

    This method unpacks the packed sequqnce and pad it, the inverse operation of :func:`pack_padded_sequence`.

    :math:`T_i` is the length of the :math:`i`-th Variable in the sequences.
    :math:`B` is the batch size equal to the length of the sequences. 
    :math:`T` is the max of :math:`T_i` for all :math:`i`. 
    :math:`*` is the remaining dimensions including none.

    .. note::
      This function **must** be used the dynamic computation mode.

    Example:

    .. code-block:: python

      import numpy as np
      import nnabla as nn
      import nnabla.functions as F
      import nnabla.utils.rnn as rnn_utils

      nn.set_auto_forward(True)

      l2v = lambda ldata: nn.Variable.from_numpy_array(np.asarray(ldata))
      a = l2v([3, 3])
      b = l2v([2, 2, 2])
      c = l2v([2, 2, 2])
      d = l2v([1, 1, 1, 1])
      e = l2v([3, 3])
      sequences = [a, b, c, d, e]

      packed_sequence = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
      print(packed_sequence.data.d)
      print(packed_sequence.batch_sizes.d)

      padded_sequence, lengths = rnn_utils.pad_packed_sequence(packed_sequence)
      print(padded_sequence.d)
      print(lengths.d)

    Args: 
      sequence (:obj:`PackedSequence`): PackedSequence.
      batch_first (bool): If False, output is of (:math:`T`, :math:`B`, :math:`*`) shape,
                          otherwise (:math:`B`, :math:`T`, :math:`*`).
      padding_value (float): Padding value.
      total_length (int): If not None, the outputs are padded up to the `total_length`.
                          If the `total_length` is less than the max length in the `sequences`,
                          the error is thrown.
                          This is normally used in the distributed training to align with 
                          the longest sequence in a distributed system.

    Returns:
      :obj:`nnabla.Variable` of (:math:`T`, :math:`B`, :math:`*`) or (:math:`B`, :math:`T`, :math:`*`) shape
    """
    packed_sequence = sequence.data
    batch_sizes = sequence.batch_sizes
    sorted_indices = sequence.sorted_indices
    unsorted_indices = sequence.unsorted_indices

    T = batch_sizes.shape[0]
    if total_length is not None:
        if total_length < T:
            raise ValueError(
                "`total length ({})` must be greater than or equal to the maximum length ({})."
                .format(total_length, T))

    padded_sequence, lengths = F.pad_packed_sequence(packed_sequence,
                                                     batch_sizes, batch_first,
                                                     padding_value,
                                                     total_length)
    if unsorted_indices is not None:
        axis = 0 if batch_first else 1
        padded_sequence = F.gather(padded_sequence, unsorted_indices, axis)
        lengths = lengths[unsorted_indices]
    return padded_sequence, lengths