Ejemplo n.º 1
0
    def BatchNormalization(self, func):
        onnx_order = [0, 2, 1, 3, 4]
        if len(func.input) != len(onnx_order):
            raise ValueError(
                "The number of BatchNormalization input must be {}".format(
                    len(onnx_order)))
        onnx_input = [func.input[i] for i in onnx_order]
        if func.batch_normalization_param.batch_stat:
            # Batch normalization for training is currently not supported
            raise ValueError("BatchNormalization with batch_stat=True is "
                             "currently not supported for ONNX conversion")
        eps = 1e-5 if func.batch_normalization_param.eps == 0.0 \
            else func.batch_normalization_param.eps
        decay_rate = 0.9 if func.batch_normalization_param.decay_rate == 0.0 \
            else func.batch_normalization_param.decay_rate
        n = onnx.helper.make_node('BatchNormalization',
                                  onnx_input,
                                  func.output,
                                  is_test=True,
                                  epsilon=eps,
                                  momentum=decay_rate
                                  # spatial=1 different from SPEC.
                                  )

        for p in func.input[1:]:
            d = sum([d if d > 1 else 0 for d in self._var_dict[p].dim])
            b_shape = nnabla_pb2.Shape()
            b_shape.dim.extend([d])
            self._var_dict[p] = b_shape
        return [n]
Ejemplo n.º 2
0
 def DepthwiseConvolution(self, func):
     cp = func.depthwise_convolution_param
     in_shape = [d for d in self._var_dict[func.input[0]].dim]
     w = [d for d in self._var_dict[func.input[1]].dim]
     out_shape = [d for d in self._var_dict[func.output[0]].dim]
     assert in_shape[cp.base_axis] * \
         cp.multiplier == out_shape[cp.base_axis]
     assert w[0] == in_shape[cp.base_axis] * cp.multiplier
     group = int(out_shape[cp.base_axis] / cp.multiplier)
     w = [int(w[0] / cp.multiplier), int(w[0] / group), w[1], w[2]]
     w_shape = nnabla_pb2.Shape()
     w_shape.dim.extend(w)
     self._var_dict[func.input[1]] = w_shape
     multiple = out_shape[cp.base_axis] / in_shape[cp.base_axis]
     assert multiple == cp.multiplier, "Invalid input/output shape!"
     n = onnx.helper.make_node(
         'Conv',
         func.input,
         func.output,
         kernel_shape=w[2:],
         dilations=cp.dilation.dim,
         strides=cp.stride.dim,
         pads=cp.pad.dim[:] * 2,
         group=group
     )
     return [n]
Ejemplo n.º 3
0
    def Deconvolution(self, func):
        output_name = fork_name(func.output[0])
        input_shape = self._var_dict[func.input[0]].dim
        if len(input_shape) != 4:
            raise ValueError("Currently, the input shape != 4 dims is not supported "
                             "by most of ConvTranspose function implementation.")
        kernel_shape = self._var_dict[func.input[1]].dim
        if len(kernel_shape) != 4:
            raise ValueError("Currently, the weight shape != 4 dims is not supported "
                             "by most of ConvTranspose function implementation.")
        kernel_shape = kernel_shape[2:]
        strides = func.deconvolution_param.stride.dim
        pads = func.deconvolution_param.pad.dim
        # ONNX requires (x1_b, x2_b, x1_e, x2_e) style
        pads = [pads[0], pads[1], pads[0], pads[1]]
        if func.deconvolution_param.dilation.dim != [1, 1]:
            raise ValueError("Currently, dilation != [1, 1] is not supported "
                             "by most of ConvTranspose function implementation.")
        if func.deconvolution_param.group != 1:
            raise ValueError("Currently, group != 1 is not supported "
                             "by most of ConvTranspose function implementation.")
        if len(func.input) > 2:
            b_dims = self._var_dict[func.input[2]].dim
            b_shape = nnabla_pb2.Shape()
            b_shape.dim.extend([1, b_dims[0], 1, 1])
            self._var_dict[func.input[2]] = b_shape

            node_conv_transpose = onnx.helper.make_node(
                "ConvTranspose",
                [func.input[0], func.input[1]],
                [output_name],
                pads=pads,
                strides=strides,
                kernel_shape=kernel_shape,
                name=func.name
            )

            node_add = onnx.helper.make_node(
                "Add",
                [output_name, func.input[2]],
                func.output,
                broadcast=1,
                name=func.name + "_add_bias"
            )
            return [node_conv_transpose, node_add]
        else:
            node_conv_transpose = onnx.helper.make_node(
                "ConvTranspose",
                func.input,
                func.output,
                pads=pads,
                strides=strides,
                kernel_shape=kernel_shape,
                name=func.name
            )
            return [node_conv_transpose]
Ejemplo n.º 4
0
def replace_negative_size_with_batch_size(shape, batch_size):
    """Replace all dimensions with negative values to batch size"""
    sl = []
    for d in shape.dim:
        if d < 0:
            # Negative size means batch size
            sl.append(batch_size)
        else:
            sl.append(d)
    out_shape = nnabla_pb2.Shape()
    out_shape.dim.extend(sl)
    return out_shape
Ejemplo n.º 5
0
 def BatchNormalization(self, func):
     nl = []
     bnp = func.batch_normalization_param
     onnx_order = [0, 2, 1, 3, 4]
     if len(func.input) != len(onnx_order):
         raise ValueError(
             "The number of BatchNormalization input must be {}".format(len(onnx_order)))
     for p in func.input[1:]:
         d = sum([d if d > 1 else 0 for d in self._var_dict[p].dim])
         b_shape = nnabla_pb2.Shape()
         b_shape.dim.extend([d])
         self._var_dict[p] = b_shape
     if func.batch_normalization_param.batch_stat:
         bn_input = [func.input[i] for i in onnx_order[:3]]
         bn_output = [func.output[0]]
         n = onnx.helper.make_node(
             'InstanceNormalization',
             bn_input,
             bn_output,
             epsilon=1e-5
         )
     else:
         bn_input = [func.input[i] for i in onnx_order]
         eps = 1e-5 if bnp.eps == 0.0 else bnp.eps
         decay_rate = 0.9 if bnp.decay_rate == 0.0 \
             else bnp.decay_rate
         n = onnx.helper.make_node(
             'BatchNormalization',
             bn_input,
             [func.output[0]],
             is_test=True,
             epsilon=eps,
             momentum=decay_rate
             # spatial=1 # say: "Don't know map unexpected argument spatial."
             # different from SPEC.
         )
     nl.append(n)
     return nl