Ejemplo n.º 1
0
 def transform(input_):
     if isinstance(input_, NNEFTensor):
         if input_.is_constant and input_.rank == 0:
             return input_.data[0]
         else:
             return nnef.Identifier(input_.name)
     return input_
Ejemplo n.º 2
0
def _results_to_result_names(results):
    results2 = []
    for r in results:
        if isinstance(r, (list, tuple)):
            results2.append(_results_to_result_names(r))
        else:
            results2.append(
                nnef.Identifier(utils.ensure_not_unicode_in_python2(r.name)))
    if isinstance(results, tuple):
        return tuple(results2)
    else:
        return results2
Ejemplo n.º 3
0
def _print(graph, file, extensions, fragments, version_custom_ops,
           annotate_shapes):
    assert graph.is_sorted(), "graph must be topologically sorted"
    assert all(tensor.name is not None or (tensor.producer is None and tensor.data is not None)
               for tensor in graph.tensors), \
        "all tensors must have names"
    assert all(all(s is not None for s in op.attribs['shape'])
               for op in graph.operations if op.type == 'external'), \
        "external ops must not contain undefined shapes"

    print(nnef.format_version((1, 0)), file=file)
    if len(extensions):
        print(file=file)
        print(nnef.format_extensions(extensions), file=file)
    if fragments:
        print(file=file)
        print(fragments, file=file)
    print(file=file)

    graph_name = as_str(graph.name) if graph.name is not None else "G"
    graph_inputs = [as_str(item.name) for item in graph.inputs]
    graph_outputs = [as_str(item.name) for item in graph.outputs]

    print("graph {}({}) -> ({})".format(graph_name, ', '.join(graph_inputs),
                                        ', '.join(graph_outputs)),
          file=file)
    print("{", file=file)

    versions = {}
    for op in graph.operations:
        assert all(isinstance(item, Tensor) for item in op.outputs)

        inputs = ((from_numpy(item.data) if item.producer is None else
                   nnef.Identifier(as_str(item.name))) if isinstance(
                       item, Tensor) else item for item in op.inputs)
        inputs = tuple(inputs) if isinstance(op.inputs,
                                             tuple) else (list(inputs), )

        outputs = (nnef.Identifier(as_str(item.name)) for item in op.outputs)
        outputs = tuple(outputs) if isinstance(op.outputs,
                                               tuple) else (list(outputs), )

        attribs = {
            as_str(key): value
            for key, value in six.iteritems(op.attribs)
        }

        name = _next_version(
            op.type, versions
        ) if op.type not in nnef.StandardOperations and version_custom_ops else op.type

        dtype = attribs.get('dtype')
        if dtype is not None:
            dtype = _nnef_dtype(dtype)
            del attribs['dtype']

        for key, value in six.iteritems(attribs):
            if isinstance(value, (type, np.dtype)):
                attribs[key] = _nnef_dtype(value)

        invocation = nnef.format_invocation(name=name,
                                            dtype=dtype,
                                            attribs=attribs,
                                            inputs=inputs,
                                            outputs=outputs)
        annotation = "    # " + ", ".join(_nnef_dtype(output.dtype) + str(output.shape) for output in op.outputs) \
            if annotate_shapes else ''

        print("    {};{}".format(invocation, annotation), file=file)

    print("}", file=file)
Ejemplo n.º 4
0
 def transform(result_):
     assert isinstance(
         result_, NNEFTensor
     ), "Results must be NNEF tensors, or lists/tuples of that."
     return nnef.Identifier(result_.name)
Ejemplo n.º 5
0
 def transform(arg):
     if isinstance(arg, dog.DataNode):
         return nnef.Identifier(
             utils.ensure_not_unicode_in_python2(arg.name))
     else:
         return utils.ensure_not_unicode_in_python2(arg)
Ejemplo n.º 6
0
import nnef
import numpy as np
from collections import OrderedDict

input = nnef.Tensor('input', dtype='scalar')
filter = nnef.Tensor('filter',
                     dtype='scalar',
                     data=np.random.randn(32, 3, 5, 5))
output = nnef.Tensor('output', dtype='scalar')

external = nnef.Operation('external',
                          attribs={'shape': [1, 3, 224, 224]},
                          inputs=OrderedDict(),
                          outputs=OrderedDict([('output',
                                                nnef.Identifier('input'))]))
variable = nnef.Operation('variable',
                          attribs={
                              'shape': [32, 3, 5, 5],
                              'label': 'conv/filter'
                          },
                          inputs=OrderedDict(),
                          outputs=OrderedDict([('output',
                                                nnef.Identifier('filter'))]))
conv = nnef.Operation('conv',
                      attribs={},
                      inputs=OrderedDict([('input', nnef.Identifier('input')),
                                          ('filter', nnef.Identifier('filter'))
                                          ]),
                      outputs=OrderedDict([('output',
                                            nnef.Identifier('output'))]))