import numpy as np import sys from netExamples.grokking.mnist import \ images, labels, test_images, test_labels from nnet import NNet np.random.seed(1) batch_size = 100 iterations = 301 nn = NNet(sizes=[784, 100, 10], batch_size=batch_size) nn.setActivations(['brelu', 'linear']) nn.setMaskPr({1: 2}) nn.setAlpha(0.001) nn.scale(0.1) for j in range(iterations): error, correct_cnt = (0.0, 0) for i in range(int(len(images) / batch_size)): batch_start, batch_end = ((i * batch_size), ((i + 1) * batch_size)) prediction = nn.learn(images[batch_start:batch_end], labels[batch_start:batch_end]) # vprint(i, nn, suffix='a', quit=True) # vprint(i, nn.dropout_masks[1], suffix='m', quit=True) # nn.train(labels[batch_start:batch_end]) # vprint(i, nn, stage='b', quit=True) error += np.sum((labels[batch_start:batch_end] - prediction) ** 2) for k in range(batch_size): correct_cnt += int(
from verbosePrint import vprint import verbosePrint np.random.seed(1) batch_size = 128 iterations = 300 cm = ConvolutionMatrix(rows=9, cols=16, shapes=((28, 28), (3, 3))) hLen = cm.outputLength() nn = NNet(sizes=[784, hLen, 10], batch_size=batch_size) nn.replaceLayer(0, cm) nn.setActivations(['tanh', 'softmax']) nn.setMaskPr({1: 2}) nn.setAlpha(2) nn.scale(0.01, 0) nn.scale(0.1, 1) # vprint(0, nn, quit=True) # params = (test_images, test_labels) # nn.checkup(*params) for j in range(0, iterations + 1): correct_cnt = 0 for i in range(int(len(images) / batch_size)): batch_start, batch_end = ((i * batch_size), ((i + 1) * batch_size)) prediction = nn.learn(images[batch_start:batch_end], labels[batch_start:batch_end]) # vprint(i, nn, suffix='a', quit=True) # vprint(i, nn.dropout_masks[1], suffix='m', quit=True) for k in range(batch_size):