Ejemplo n.º 1
0
    def test_get_nvidia_label(self):
        node_id = 6
        job_id = 10
        gpu_count = 2
        required_gpus = 2
        GPUManager.define_node_gpus(node_id, gpu_count)
        GPUManager.reserve_gpus_for_job(node_id, required_gpus)
        GPUManager.assign_gpus_for_job(node_id, job_id, required_gpus)
        nvidia_label = GPUManager.get_nvidia_docker_label(node_id, job_id)
        self.assertEqual(nvidia_label, "0,1")

        gpu_count = 4
        job_id = 11
        GPUManager.define_node_gpus(node_id, gpu_count)
        GPUManager.reserve_gpus_for_job(node_id, required_gpus)
        GPUManager.assign_gpus_for_job(node_id, job_id, required_gpus)
        nvidia_label = GPUManager.get_nvidia_docker_label(node_id, job_id)
        self.assertEqual(nvidia_label, "2,3")
Ejemplo n.º 2
0
 def test_calls_where_node_has_no_gpus(self):
     node_id = 7
     job_id = 10
     gpu_count = 2
     required_gpus = 2
     GPUManager.define_node_gpus(node_id, gpu_count)
     node_id = 8
     self.assertFalse(
         GPUManager.reserve_gpus_for_job(node_id, required_gpus))
     self.assertFalse(
         GPUManager.assign_gpus_for_job(node_id, job_id, required_gpus))
     nvidia_label = GPUManager.get_nvidia_docker_label(node_id, job_id)
     self.assertEqual(nvidia_label, "")
Ejemplo n.º 3
0
    def test_release_gpu(self):
        node_id = 7
        job_id = 10
        gpu_count = 2
        required_gpus = 2
        GPUManager.define_node_gpus(node_id, gpu_count)
        GPUManager.reserve_gpus_for_job(node_id, required_gpus)
        self.assertTrue(
            GPUManager.assign_gpus_for_job(node_id, job_id, required_gpus))

        job_id = 11

        self.assertFalse(
            GPUManager.reserve_gpus_for_job(
                node_id, required_gpus))  # shouldnt have enough GPUs

        GPUManager.release_gpus(node_id, 10)
        self.assertTrue(GPUManager.reserve_gpus_for_job(
            node_id, required_gpus))  #gpus should be avail again
        self.assertTrue(
            GPUManager.assign_gpus_for_job(
                node_id, job_id, required_gpus))  #gpus should be avail again
        nvidia_label = GPUManager.get_nvidia_docker_label(node_id, job_id)
        self.assertEqual(nvidia_label, "0,1")
Ejemplo n.º 4
0
    def _configure_all_tasks(self, config, job_exe, job_type):
        """Configures the given execution with items that apply to all tasks

        :param config: The execution configuration
        :type config: :class:`job.execution.configuration.json.exe_config.ExecutionConfiguration`
        :param job_exe: The job execution model being scheduled
        :type job_exe: :class:`job.models.JobExecution`
        :param job_type: The job type model
        :type job_type: :class:`job.models.JobType`
        """

        config.set_task_ids(job_exe.get_cluster_id())

        for task_type in config.get_task_types():
            # Configure env vars describing allocated task resources
            env_vars = {}
            nvidia_docker_label = None

            for resource in config.get_resources(task_type).resources:
                env_name = 'ALLOCATED_%s' % normalize_env_var_name(
                    resource.name)
                env_vars[
                    env_name] = '%.1f' % resource.value  # Assumes scalar resources
                if resource.name == "gpus" and int(resource.value) > 0:
                    gpu_list = GPUManager.get_nvidia_docker_label(
                        job_exe.node_id, job_exe.job_id)
                    nvidia_docker_label = DockerParameter(
                        'env', 'NVIDIA_VISIBLE_DEVICES={}'.format(
                            gpu_list.strip(',')))

            # Configure env vars for Scale meta-data
            env_vars['SCALE_JOB_ID'] = unicode(job_exe.job_id)
            env_vars['SCALE_EXE_NUM'] = unicode(job_exe.exe_num)
            if job_exe.recipe_id:
                env_vars['SCALE_RECIPE_ID'] = unicode(job_exe.recipe_id)
            if job_exe.batch_id:
                env_vars['SCALE_BATCH_ID'] = unicode(job_exe.batch_id)

            # Configure workspace volumes
            workspace_volumes = {}
            for task_workspace in config.get_workspaces(task_type):
                logger.debug(self._workspaces)
                workspace_model = self._workspaces[task_workspace.name]
                # TODO: Should refactor workspace broker to return a Volume object and remove BrokerVolume
                if workspace_model.volume:
                    vol_name = get_workspace_volume_name(
                        job_exe, task_workspace.name)
                    cont_path = get_workspace_volume_path(workspace_model.name)
                    if workspace_model.volume.host:
                        host_path = workspace_model.volume.remote_path
                        volume = Volume(vol_name,
                                        cont_path,
                                        task_workspace.mode,
                                        is_host=True,
                                        host_path=host_path)
                    else:
                        driver = workspace_model.volume.driver
                        driver_opts = {}
                        # TODO: Hack alert for nfs broker, as stated above, we should return Volume from broker
                        if driver == 'nfs':
                            driver_opts = {
                                'share': workspace_model.volume.remote_path
                            }
                        volume = Volume(vol_name,
                                        cont_path,
                                        task_workspace.mode,
                                        is_host=False,
                                        driver=driver,
                                        driver_opts=driver_opts)
                    workspace_volumes[task_workspace.name] = volume

            config.add_to_task(task_type,
                               env_vars=env_vars,
                               wksp_volumes=workspace_volumes)

        # Labels for metric grouping
        job_id_label = DockerParameter(
            'label', 'scale-job-id={}'.format(job_exe.job_id))
        job_execution_id_label = DockerParameter(
            'label', 'scale-job-execution-id={}'.format(job_exe.exe_num))
        job_type_name_label = DockerParameter(
            'label', 'scale-job-type-name={}'.format(job_type.name))
        job_type_version_label = DockerParameter(
            'label', 'scale-job-type-version={}'.format(job_type.version))
        main_label = DockerParameter('label', 'scale-task-type=main')
        if nvidia_docker_label:
            nvidia_runtime_param = DockerParameter('runtime', 'nvidia')
            config.add_to_task('main',
                               docker_params=[
                                   job_id_label, job_type_name_label,
                                   job_type_version_label,
                                   job_execution_id_label, main_label,
                                   nvidia_docker_label, nvidia_runtime_param
                               ])
        else:
            config.add_to_task('main',
                               docker_params=[
                                   job_id_label, job_type_name_label,
                                   job_type_version_label,
                                   job_execution_id_label, main_label
                               ])

        if not job_type.is_system:
            pre_label = DockerParameter('label', 'scale-task-type=pre')
            post_label = DockerParameter('label', 'scale-task-type=post')
            config.add_to_task('pre',
                               docker_params=[
                                   job_id_label, job_type_name_label,
                                   job_type_version_label,
                                   job_execution_id_label, pre_label
                               ])
            config.add_to_task('post',
                               docker_params=[
                                   job_id_label, job_type_name_label,
                                   job_type_version_label,
                                   job_execution_id_label, post_label
                               ])

        # Configure tasks for logging
        if settings.LOGGING_ADDRESS is not None:
            log_driver = DockerParameter('log-driver', 'fluentd')
            fluent_precision = DockerParameter(
                'log-opt', 'fluentd-sub-second-precision=true')
            log_address = DockerParameter(
                'log-opt', 'fluentd-address=%s' % settings.LOGGING_ADDRESS)
            if not job_type.is_system:
                pre_task_tag = DockerParameter(
                    'log-opt', 'tag=%s|%s|%s|%s|%s' %
                    (config.get_task_id('pre'), job_type.name,
                     job_type.version, job_exe.job_id, job_exe.exe_num))
                config.add_to_task('pre',
                                   docker_params=[
                                       log_driver, fluent_precision,
                                       log_address, pre_task_tag
                                   ])
                post_task_tag = DockerParameter(
                    'log-opt', 'tag=%s|%s|%s|%s|%s' %
                    (config.get_task_id('post'), job_type.name,
                     job_type.version, job_exe.job_id, job_exe.exe_num))
                config.add_to_task('post',
                                   docker_params=[
                                       log_driver, fluent_precision,
                                       log_address, post_task_tag
                                   ])
                # TODO: remove es_urls parameter when Scale no longer supports old style job types

                # Post task needs ElasticSearch URL to grab logs for old artifact registration
                es_param = DockerParameter(
                    'env', 'ELASTICSEARCH_URL=%s' % settings.ELASTICSEARCH_URL)
                config.add_to_task('post', docker_params=[es_param])
            main_task_tag = DockerParameter(
                'log-opt', 'tag=%s|%s|%s|%s|%s' %
                (config.get_task_id('main'), job_type.name, job_type.version,
                 job_exe.job_id, job_exe.exe_num))
            config.add_to_task('main',
                               docker_params=[
                                   log_driver, fluent_precision, log_address,
                                   main_task_tag
                               ])