Ejemplo n.º 1
0
def mashup(ctx, input_dir, filename, control_filename, time, speed, seed):
    filenames = []

    for root, _, files in os.walk(input_dir):
        for f in files:
            if f.endswith(('.png', '.jpg')):
                filenames.append(os.path.join(root, f))

    collage_count = min(random.randint(4, 6), len(filenames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(filenames) - 1)

        input_filename = os.path.join(input_dir, filenames[index])

        collage_input = tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32)

        collage_images.append(collage_input)

    if control_filename:
        control_shape = util.shape_from_file(control_filename)
        control = tf.image.convert_image_dtype(util.load(control_filename, channels=control_shape[2]), dtype=tf.float32)

    else:
        control = collage_images.pop()

    shape = tf.shape(control)  # All images need to be the same size!

    control = value.value_map(control, shape, keepdims=True)

    base = generators.basic(freq=random.randint(2, 5), shape=shape, lattice_drift=random.randint(0, 1), hue_range=random.random(),
                            seed=seed, time=time, speed=speed)

    value_shape = value.value_shape(shape)

    control = value.convolve(kernel=effects.ValueMask.conv2d_blur, tensor=control, shape=value_shape)

    with tf.compat.v1.Session().as_default():
        tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images)

        tensor = value.blend(tensor, base, .125 + random.random() * .125)

        tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125)
        tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control)

        tensor = tf.image.adjust_brightness(tensor, .05)
        tensor = tf.image.adjust_contrast(tensor, 1.25)

        util.save(tensor, filename)

    print('mashup')
Ejemplo n.º 2
0
def frame(ctx, input_dir, frame, seed, filename, width, height):
    value.set_seed(seed)

    shape = [height, width, 3]

    dirnames = [d for d in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir, d))]

    if not dirnames:
        click.echo("Couldn't determine directory names inside of input dir " + input_dir)
        sys.exit(1)

    collage_count = min(random.randint(4, 6), len(dirnames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(dirnames) - 1)

        dirname = dirnames[index]

        filenames = [f for f in sorted(os.listdir(os.path.join(input_dir, dirname))) if f.endswith('.png')]

        if not filenames:
            continue

        input_filename = os.path.join(input_dir, dirname, filenames[frame])

        collage_images.append(tf.image.convert_image_dtype(util.load(input_filename, channels=3), dtype=tf.float32))

    base = generators.basic(freq=random.randint(2, 4), shape=shape, hue_range=random.random(), seed=seed, time=frame/30.0, speed=0.125)

    control = value.value_map(collage_images.pop(), shape, keepdims=True)

    control = value.convolve(kernel=effects.ValueMask.conv2d_blur, tensor=control, shape=[shape[0], shape[1], 1])

    with tf.compat.v1.Session().as_default():
        tensor = effects.blend_layers(control, shape, random.random() * .5, *collage_images)

        tensor = value.blend(tensor, base, .125 + random.random() * .125)

        tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125)
        tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125, reference=control)

        tensor = tf.image.adjust_brightness(tensor, .05)
        tensor = tf.image.adjust_contrast(tensor, 1.25)

        util.save(tensor, filename)
Ejemplo n.º 3
0
def basic(ctx, width, height, input_dir, name):
    shape = [height, width, 3]

    filenames = [
        f for f in os.listdir(input_dir)
        if f.endswith(".png") or f.endswith(".jpg")
    ]

    collage_count = min(random.randint(3, 5), len(filenames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(filenames) - 1)

        collage_input = tf.image.convert_image_dtype(util.load(
            os.path.join(input_dir, filenames[index])),
                                                     dtype=tf.float32)
        collage_images.append(effects.resample(collage_input, shape))

    base = generators.basic(freq=random.randint(2, 5),
                            shape=shape,
                            lattice_drift=random.randint(0, 1),
                            hue_range=random.random())

    control = effects.value_map(collage_images.pop(), shape, keep_dims=True)

    tensor = effects.blend_layers(control, shape,
                                  random.random() * .5, *collage_images)

    tensor = effects.blend(tensor, base, .125 + random.random() * .125)

    tensor = effects.bloom(tensor, shape, alpha=.25 + random.random() * .125)
    tensor = effects.shadow(tensor, shape, alpha=.25 + random.random() * .125)

    tensor = tf.image.adjust_brightness(tensor, .05)
    tensor = tf.image.adjust_contrast(tensor, 1.25)

    with tf.Session().as_default():
        save(tensor, name)

    print(name)
Ejemplo n.º 4
0
def basic(ctx, width, height, input_dir, name, control_filename,
          retro_upscale):
    shape = [height, width,
             3]  # Any shape you want, as long as it's [1024, 1024, 3]

    filenames = []

    for root, _, files in os.walk(input_dir):
        for filename in files:
            if filename.endswith(('.png', '.jpg')):
                filenames.append(os.path.join(root, filename))

    collage_count = min(random.randint(4, 6), len(filenames))
    collage_images = []

    for i in range(collage_count + 1):
        index = random.randint(0, len(filenames) - 1)

        input_filename = os.path.join(input_dir, filenames[index])

        collage_input = tf.image.convert_image_dtype(util.load(input_filename,
                                                               channels=3),
                                                     dtype=tf.float32)

        input_shape = effects.shape_from_file(input_filename)

        if retro_upscale:
            input_shape = [
                input_shape[0] * 2, input_shape[1] * 2, input_shape[2]
            ]

            collage_input = effects.resample(collage_input,
                                             input_shape,
                                             spline_order=0)

        collage_input = effects.square_crop_and_resize(collage_input,
                                                       input_shape, 1024)

        collage_images.append(collage_input)

    base = generators.basic(freq=random.randint(2, 5),
                            shape=shape,
                            lattice_drift=random.randint(0, 1),
                            hue_range=random.random())

    if control_filename:
        control = tf.image.convert_image_dtype(util.load(control_filename,
                                                         channels=1),
                                               dtype=tf.float32)

        control = effects.square_crop_and_resize(
            control, effects.shape_from_file(control_filename), 1024)

        control = effects.value_map(control, shape, keep_dims=True)

    else:
        control = effects.value_map(collage_images.pop(),
                                    shape,
                                    keep_dims=True)

    control = effects.convolve(effects.ValueMask.conv2d_blur, control,
                               [height, width, 1])

    with tf.Session().as_default():
        # sort collage images by brightness
        collage_images = [
            j[1] for j in sorted([(tf.reduce_sum(i).eval(), i)
                                  for i in collage_images])
        ]

        tensor = effects.blend_layers(control, shape,
                                      random.random() * .5, *collage_images)

        tensor = effects.blend(tensor, base, .125 + random.random() * .125)

        tensor = effects.bloom(tensor,
                               shape,
                               alpha=.25 + random.random() * .125)
        tensor = effects.shadow(tensor,
                                shape,
                                alpha=.25 + random.random() * .125,
                                reference=control)

        tensor = tf.image.adjust_brightness(tensor, .05)
        tensor = tf.image.adjust_contrast(tensor, 1.25)

        save(tensor, name)

    print('mashup')