Ejemplo n.º 1
0
def get_nonlinear(self, cols=['ENMO', 'mean_hr', 'hrv_ms']):

    nonlin = defaultdict(dict)

    for col in cols:
        column = defaultdict(dict)
        column_sleep = defaultdict(dict)
        column_wake = defaultdict(dict)
        for idx in range(len(self.sleep_windows)):
            params = defaultdict(dict)
            params['DFA'] = nolds.dfa(self.sleep_windows[idx][col],
                                      debug_data=False)
            params['SampEn'] = nolds.sampen(self.sleep_windows[idx][col],
                                            debug_data=False)
            column_sleep[idx] = params
        for idx in range(len(self.wake_windows)):
            params = defaultdict(dict)
            params['DFA'] = nolds.dfa(self.wake_windows[idx][col],
                                      debug_data=False)
            params['SampEn'] = nolds.sampen(self.wake_windows[idx][col],
                                            debug_data=False)
            column_wake[idx] = params
        column['sleep'] = column_sleep
        column['wake'] = column_wake

        nonlin[col] = column
    self.nonlinear = nonlin
    return self
Ejemplo n.º 2
0
def dfa(nni=None,
        short=(4, 16),
        long=(17, 64),
        show=False,
        figsize=None,
        legend=True):
    """Conducts Detrended Fluctuation Analysis for short and long-term fluctuation of an NNI series.

	References: [Joshua2008][Kuusela2014][Fred2017]
	Docs:		https://pyhrv.readthedocs.io/en/latest/_pages/api/nonlinear.html#sample-entropy-sample-entropy

	Parameters
	----------
	nn : array
		NN intervals in [ms] or [s].
	rpeaks : array
		R-peak times in [ms] or [s].
	short : array, 2 elements
		Interval limits of the short term fluctuations (default: None: [4, 16]).
	long : array, 2 elements
		Interval limits of the long term fluctuations (default: None: [17, 64]).
	show : bool
		If True, shows DFA plot (default: True)
	legend : bool
		If True, adds legend with alpha1 and alpha2 values to the DFA plot (default: True)

	Returns (biosppy.utils.ReturnTuple Object)
	------------------------------------------
	[key : format]
		Description.
	dfa_short : float
		Alpha value of the short term fluctuations
	dfa_long : float
		Alpha value of the long term fluctuations
	dfa_plot : matplotlib plot figure
		Matplotlib plot figure of the DFA

	"""

    # Create arrays
    short = range(short[0], short[1] + 1)
    long = range(long[0], long[1] + 1)
    alpha1, dfa_short = nolds.dfa(nni, short, debug_data=True, overlap=False)
    alpha2, dfa_long = nolds.dfa(nni, long, debug_data=True, overlap=False)

    # Output
    args = (alpha1, alpha2, short, long)
    return biosppy.utils.ReturnTuple(
        args,
        ('dfa_alpha1', 'dfa_alpha2', 'dfa_alpha1_beats', 'dfa_alpha2_beats'))
Ejemplo n.º 3
0
def get_nonlin_params(df, col):
    params = defaultdict(dict)
    #params['hurst'] = nolds.hurst_rs(df[col],debug_data=False)
    params['DFA'] = nolds.dfa(df[col], debug_data=False)
    params['sampen'] = nolds.sampen(df[col], debug_data=False)
    #params['lyap1'] = nolds.lyap_r(df[col],debug_data=False)
    return params
Ejemplo n.º 4
0
def test_complexity_vs_Python():

    signal = np.cos(np.linspace(start=0, stop=30, num=100))

    # Shannon
    shannon = nk.entropy_shannon(signal)
    #    assert scipy.stats.entropy(shannon, pd.Series(signal).value_counts())
    assert np.allclose(shannon - pyentrp.shannon_entropy(signal), 0)

    # Approximate
    assert np.allclose(nk.entropy_approximate(signal), 0.17364897858477146)
    assert np.allclose(
        nk.entropy_approximate(
            signal, dimension=2, r=0.2 * np.std(signal, ddof=1)) -
        entropy_app_entropy(signal, 2), 0)

    assert nk.entropy_approximate(
        signal, dimension=2,
        r=0.2 * np.std(signal, ddof=1)) != pyeeg_ap_entropy(
            signal, 2, 0.2 * np.std(signal, ddof=1))

    # Sample
    assert np.allclose(
        nk.entropy_sample(signal, dimension=2, r=0.2 * np.std(signal, ddof=1))
        - entropy_sample_entropy(signal, 2), 0)
    assert np.allclose(
        nk.entropy_sample(signal, dimension=2, r=0.2) -
        nolds.sampen(signal, 2, 0.2), 0)
    assert np.allclose(
        nk.entropy_sample(signal, dimension=2, r=0.2) -
        entro_py_sampen(signal, 2, 0.2, scale=False), 0)
    assert np.allclose(
        nk.entropy_sample(signal, dimension=2, r=0.2) -
        pyeeg_samp_entropy(signal, 2, 0.2), 0)

    #    import sampen
    #    sampen.sampen2(signal[0:300], mm=2, r=r)

    assert nk.entropy_sample(signal,
                             dimension=2, r=0.2) != pyentrp.sample_entropy(
                                 signal, 2, 0.2)[1]
    assert nk.entropy_sample(
        signal, dimension=2,
        r=0.2 * np.sqrt(np.var(signal))) != MultiscaleEntropy_sample_entropy(
            signal, 2, 0.2)[0.2][2]

    # MSE
    #    assert nk.entropy_multiscale(signal, 2, 0.2*np.sqrt(np.var(signal))) != np.trapz(MultiscaleEntropy_mse(signal, [i+1 for i in range(10)], 2, 0.2, return_type="list"))
    #    assert nk.entropy_multiscale(signal, 2, 0.2*np.std(signal, ddof=1)) != np.trapz(pyentrp.multiscale_entropy(signal, 2, 0.2, 10))

    # Fuzzy
    assert np.allclose(
        nk.entropy_fuzzy(signal, dimension=2, r=0.2, delay=1) -
        entro_py_fuzzyen(signal, 2, 0.2, 1, scale=False), 0)

    # DFA
    assert nk.fractal_dfa(signal, windows=np.array([
        4, 8, 12, 20
    ])) != nolds.dfa(signal, nvals=[4, 8, 12, 20], fit_exp="poly")
Ejemplo n.º 5
0
def newHurst(ts):
    # Create the range of lag values
    window_len = 70
    hurst_ts = np.zeros(window_len, dtype=np.int)
    for tail in range(window_len, len(ts)):
        cur_ts = ts[max(1, tail - window_len):tail]

        hurst_ts = np.append(hurst_ts, nolds.dfa(cur_ts))
    return hurst_ts
    def DFA(self):
        '''	
		Returns the H exponent from detrended fluctuation analysis 
		Seems like the number of points needs to be over 70 or so for good results

		'''
        if not self.cleaned:
            self.removeNoise()

        return dfa(self.points)
Ejemplo n.º 7
0
def feature_extraction(data):
    """
    Input:
        - data: 4 * 15360
    Output:
        - feature array: 18*1
    """
    fq1, pxx1 = psd(data[0,:], fs, seglength)
    fq2, pxx2 = psd(data[1,:], fs, seglength)
    fq3, pxx3 = psd(data[2,:], fs, seglength)
    fq4, pxx4 = psd(data[3,:], fs, seglength)
    f1 = rela_alpha(fq2, pxx1) # feature 1: relative alpha power of channel 1
    f2 = rela_delta(fq1, pxx1) # feature 2: relative delta power of channel 1
    f3 = rela_theta(fq1, pxx1) # feature 3: relative theta power of channel 1
    f4 = rela_alpha(fq2, pxx2) # feature 4: relative alpha power of channel 2
    f5 = rela_delta(fq2, pxx2) # feature 5: relative delta power of channel 2
    f6 = rela_theta(fq2, pxx2) # feature 6: relative theta power of channel 2
    f7 = rela_alpha(fq3, pxx3) # feature 7: relative alpha power of channel 3
    f8 = rela_delta(fq3, pxx3) # feature 8: relative delta power of channel 3
    f9 = rela_theta(fq3, pxx3) # feature 9: relative theta power of channel 3
    f10 = rela_alpha(fq4, pxx4) # feature 10: relative alpha power of channel 4
    f11 = rela_delta(fq4, pxx4) # feature 11: relative delta power of channel 4
    f12 = rela_theta(fq4, pxx4) # feature 12: relative theta power of channel 4
    f13 = hemi_ratio(f1, f4) # feature 13: hemi-ratio of alpha band between front channels (C1, C2)
    f14 = hemi_ratio(f2, f5)
    f15 = hemi_ratio(f3, f6)
    f16 = hemi_ratio(f7, f10)
    f17 = hemi_ratio(f8, f11)
    f18 = hemi_ratio(f9, f12)
    """
    multi-domain
    """
    f19 = nolds.dfa(data[0,:])
    f20 = nolds.dfa(data[1,:])
    f21 = nolds.dfa(data[2,:])
    f22 = nolds.dfa(data[3,:])
    #f = np.array([f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18])
    f = np.array([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22])
    return f
Ejemplo n.º 8
0
def load_feature(s):
    rw = [lwalk(i) for i in s]
    sd = [np.std(i) for i in rw]
    dfa = [nolds.dfa(i) for i in rw]
    hurst = [nolds.hurst_rs(i) for i in rw]
    sampen = [nolds.sampen(i) for i in rw]
    ac = [autocorrelation(i, 100) for i in rw]
    rvntsl = [ratio_value_number_to_time_series_length(i) for i in rw]
    ac_200 = [autocorrelation(i, 200) for i in rw]
    ac_300 = [autocorrelation(i, 300) for i in rw]
    lyapr = [nolds.lyap_r(i) for i in rw]
    inpv = pd.DataFrame(
        [sd, dfa, hurst, sampen, ac, rvntsl, ac_200, ac_300, lyapr])
    return inpv.transpose()
Ejemplo n.º 9
0
def feature_extract(ep):

    feature_mtrx = []
    scale = 6
    up_to = 3
    for i in range(np.shape(ep)[1]):
        ##DWT
        coeff = wavedec(ep[:,i],'db4',level = scale)
        #Select decomposition bands up to scale #
        ##Features on each scale
        E = []
        FI = []
        AE = []
        CoV = []
        #LE = [] #Lyapunov Exponent
        CD = []
        DFA = []
        for j in range(up_to+1):
            length = len(coeff[j])
        #Relative Energy
            if j == 0:
                tau = (2 ** (scale - 1)) / freq
            else:
                tau = j * (2**(scale-1)) / freq
            E.append(sum([x**2 for x in coeff[j]]) * tau / length)
        #Fluctuation Index
            FI.append( sum( np.abs(coeff[j][1:] - coeff[j][0:len(coeff[j])-1]) ) / length )

        #Detrended Fluctuation Analysis
            DFA.append(nolds.dfa(coeff[j]))
        #Approximate Entropy
            #AE.append(shannon_entropy(coeff[j]))
            AE.append(ApEn(coeff[j],2,3))

        #Coefficient of Variation
            u = np.mean(coeff[j])
            v = np.std(coeff[j])
            CoV.append(v**2/u**2)

        #Lyapunov Exponent
            #LE.append(nolds.lyap_r(coeff[j],emb_dim=5))
        #Correlation Dimension
            #CD.append(nolds.corr_dim(coeff[j],2))

        feature_mtrx.append([E,FI,AE,CoV,DFA])

        #Normalization?

    ##Output
    return(feature_mtrx)
Ejemplo n.º 10
0
    def test_hurst(self):
        st = datetime.datetime(2018, 5, 17, 1, 0, 0)
        et = datetime.datetime(2018, 5, 17, 2, 0, 0)
        _, trades, _ = DataLoader.load_split_data("/Users/jamesprince/project-data/data/consolidated-feed/LTC-USD/", st,
                                                  et, "LTC-USD")

        prices = np.asarray(trades['price'].dropna(), dtype=np.float32)

        print(prices)

        # print(len(prices))

        # res = nolds.hurst_rs(prices)
        res = nolds.dfa(prices)

        print(res)
Ejemplo n.º 11
0
    def ft_dfa(cls,
               ts: np.ndarray,
               pol_order: int = 1,
               overlap_windows: bool = True) -> float:
        """Calculate the Hurst parameter from Detrended fluctuation analysis.

        Note that the ``Hurst parameter`` is not the same quantity as the
        ``Hurst exponent``. The Hurst parameter `H` is defined as the quantity
        such that the following holds: std(ts, l * n) = l ** H * std(ts, n),
        where `ts` is the time-series, `l` is a constant factor, `n` is some
        window length of `ts`, and std(ts, k) is the standard deviation of
        `ts` within a window of size `k`.

        Check `nolds.dfa` documentation for a clear explanation about the
        underlying function.

        Parameters
        ----------
        ts : :obj:`np.ndarray`
            One-dimensional time-series values.

        pol_order : int, optional (default=1)
            Order of the detrending polynomial within each window of the
            analysis.

        overlap_windows : bool, optional (default=True)
            If True, overlap the windows used while performing the analysis.

        Returns
        -------
        float
            Hurst parameter.

        References
        ----------
        .. [1] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons,
            H. E. Stanley, and A. L. Goldberger, Mosaic organization of
            DNA nucleotides, Physical Review E, vol. 49, no. 2, 1994.
        .. [2] R. Hardstone, S.-S. Poil, G. Schiavone, R. Jansen,
            V. V. Nikulin, H. D. Mansvelder, and K. Linkenkaer-Hansen,
            Detrended fluctuation analysis: A scale-free view on neuronal
            oscillations, Frontiers in Physiology, vol. 30, 2012.
        .. [3] "nolds" Python package: https://pypi.org/project/nolds/
        """
        hurst_coeff = nolds.dfa(ts, order=pol_order, overlap=overlap_windows)
        return hurst_coeff
Ejemplo n.º 12
0
def dfa_fd(timeseries):
    """Detrended Fluctuation Analysis (DFA)

    DFA measures the Hurst parameter H, which is very similar to the Hurst \
    exponent.
    The main difference is that DFA can be used for non-stationary time series\
    (whose mean and/or variance change over time).

    :param timeseries: Your time series.
    :type timeseries: numpy.ndarray

    :return dfa: Detrended Fluctuation Analysis.
    .. Note::
        This functions uses the dfa implementation from the Nolds package.
    """
    ts = utils.fixseries(timeseries)

    return utils.truncate(nolds.dfa(ts))
Ejemplo n.º 13
0
def dfa_fd(series):
    """Detrended Fluctuation Analysis (DFA)

    DFA measures the Hurst parameter H, which is very similar to the Hurst exponent. 
    The main difference is that DFA can be used for non-stationary processes (whose mean and/or variance change over time).

    Keyword arguments:
    series : numpy.array
        One dimensional time series.
    Returns
    -------
    dfa : float
        Detrended Fluctuation Analysis.
    
    Notes:
    ------
    This functions uses the dfa implementation from the Nolds package.
    """

    dfa = nolds.dfa(series)
    return dfa
Ejemplo n.º 14
0
def dfa_fd(timeseries, nvals=None, overlap=True, order=1, nodata=-9999):
    """Detrended Fluctuation Analysis (DFA) measures the Hurst \
    parameter H, which is very similar to the Hurst Exponent (HE).
    The main difference is that DFA can be used for non-stationary \
    time series.

    :param timeseries: Time series.
    :type timeseries: numpy.ndarray

    :param nvals: Sizes of subseries to use.
    :type nvals: int

    :param overlap: if True, there will be a 50% overlap on windows \
    otherwise non-overlapping windows will be used.
    :type overlap: Boolean

    :param order: Polynomial order of trend to remove.
    :type order: Boolean

    :param nodata: nodata of the time series. Default is -9999.
    :type nodata: int

    :return dfa: Detrended Fluctuation Analysis.

    .. Note::

        This function uses the Detrended Fluctuation Analysis (DFA) \
        implementation from the Nolds package. Due to time series \
        characteristcs we use by default the 'RANSAC' \
        fitting method as it is more robust to outliers.
        For more details regarding the hurst implementation, check Nolds \
        documentation page.

    """
    import nolds

    ts = fixseries(timeseries, nodata)

    return truncate(nolds.dfa(ts, nvals, overlap, order))
Ejemplo n.º 15
0
def complexity(signal,
               sampling_rate=1000,
               shannon=True,
               sampen=True,
               multiscale=True,
               spectral=True,
               svd=True,
               correlation=True,
               higushi=True,
               petrosian=True,
               fisher=True,
               hurst=True,
               dfa=True,
               lyap_r=False,
               lyap_e=False,
               emb_dim=2,
               tolerance="default",
               k_max=8,
               bands=None,
               tau=1):
    """
    Computes several chaos/complexity indices of a signal (including entropy, fractal dimensions, Hurst and Lyapunov exponent etc.).

    Parameters
    ----------
    signal : list or array
        List or array of values.
    sampling_rate : int
        Sampling rate (samples/second).
    shannon : bool
        Computes Shannon entropy.
    sampen : bool
        Computes approximate sample entropy (sampen) using Chebychev and Euclidean distances.
    multiscale : bool
        Computes multiscale entropy (MSE). Note that it uses the 'euclidean' distance.
    spectral : bool
        Computes Spectral Entropy.
    svd : bool
        Computes the Singular Value Decomposition (SVD) entropy.
    correlation : bool
        Computes the fractal (correlation) dimension.
    higushi : bool
        Computes the Higushi fractal dimension.
    petrosian : bool
        Computes the Petrosian fractal dimension.
    fisher : bool
        Computes the Fisher Information.
    hurst : bool
        Computes the Hurst exponent.
    dfa : bool
        Computes DFA.
    lyap_r : bool
        Computes Positive Lyapunov exponents (Rosenstein et al. (1993) method).
    lyap_e : bool
        Computes Positive Lyapunov exponents (Eckmann et al. (1986) method).
    emb_dim : int
        The embedding dimension (*m*, the length of vectors to compare). Used in sampen, fisher, svd and fractal_dim.
    tolerance : float
        Distance *r* threshold for two template vectors to be considered equal. Default is 0.2*std(signal). Used in sampen and fractal_dim.
    k_max : int
        The maximal value of k used for Higushi fractal dimension. The point at which the FD plateaus is considered a saturation point and that kmax value should be selected (Gómez, 2009). Some studies use a value of 8 or 16 for ECG signal and other 48 for MEG.
    bands : int
        Used for spectral density. A list of numbers delimiting the bins of the frequency bands. If None the entropy is computed over the whole range of the DFT (from 0 to `f_s/2`).
    tau : int
        The delay. Used for fisher, svd, lyap_e and lyap_r.

    Returns
    ----------
    complexity : dict
        Dict containing values for each indices.


    Example
    ----------
    >>> import neurokit as nk
    >>> import numpy as np
    >>>
    >>> signal = np.sin(np.log(np.random.sample(666)))
    >>> complexity = nk.complexity(signal)

    Notes
    ----------
    *Details*

    - **Entropy**: Entropy is a measure of unpredictability of the state, or equivalently, of its average information content.

      - *Shannon entropy*: Shannon entropy was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". Shannon entropy provides an absolute limit on the best possible average length of lossless encoding or compression of an information source.
      - *Sample entropy (sampen)*: Measures the complexity of a time-series, based on approximate entropy. The sample entropy of a time series is defined as the negative natural logarithm of the conditional probability that two sequences similar for emb_dim points remain similar at the next point, excluding self-matches. A lower value for the sample entropy therefore corresponds to a higher probability indicating more self-similarity.
      - *Multiscale entropy*: Multiscale entropy (MSE) analysis is a new method of measuring the complexity of finite length time series.
      - *SVD Entropy*: Indicator of how many vectors are needed for an adequate explanation of the data set. Measures feature-richness in the sense that the higher the entropy of the set of SVD weights, the more orthogonal vectors are required to adequately explain it.

    - **fractal dimension**: The term *fractal* was first introduced by Mandelbrot in 1983. A fractal is a set of points that when looked at smaller scales, resembles the whole set. The concept of fractak dimension (FD) originates from fractal geometry. In traditional geometry, the topological or Euclidean dimension of an object is known as the number of directions each differential of the object occupies in space. This definition of dimension works well for geometrical objects whose level of detail, complexity or *space-filling* is the same. However, when considering two fractals of the same topological dimension, their level of *space-filling* is different, and that information is not given by the topological dimension. The FD emerges to provide a measure of how much space an object occupies between Euclidean dimensions. The FD of a waveform represents a powerful tool for transient detection. This feature has been used in the analysis of ECG and EEG to identify and distinguish specific states of physiologic function. Many algorithms are available to determine the FD of the waveform (Acharya, 2005).

      - *Correlation*: A measure of the fractal (or correlation) dimension of a time series which is also related to complexity. The correlation dimension is a characteristic measure that can be used to describe the geometry of chaotic attractors. It is defined using the correlation sum C(r) which is the fraction of pairs of points X_i in the phase space whose distance is smaller than r.
      - *Higushi*: Higuchi proposed in 1988 an efficient algorithm for measuring the FD of discrete time sequences. As the reconstruction of the attractor phase space is not necessary, this algorithm is simpler and faster than D2 and other classical measures derived from chaos theory. FD can be used to quantify the complexity and self-similarity of a signal. HFD has already been used to analyse the complexity of brain recordings and other biological signals.
      - *Petrosian Fractal Dimension*: Provide a fast computation of the FD of a signal by translating the series into a binary sequence.

    - **Other**:

      - *Fisher Information*:  A way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information.
      - *Hurst*: The Hurst exponent is a measure of the "long-term memory" of a time series. It can be used to determine whether the time series is more, less, or equally likely to increase if it has increased in previous steps. This property makes the Hurst exponent especially interesting for the analysis of stock data.
      - *DFA*: DFA measures the Hurst parameter H, which is very similar to the Hurst exponent. The main difference is that DFA can be used for non-stationary processes (whose mean and/or variance change over time).
      - *Lyap*: Positive Lyapunov exponents indicate chaos and unpredictability. Provides the algorithm of Rosenstein et al. (1993) to estimate the largest Lyapunov exponent and the algorithm of Eckmann et al. (1986) to estimate the whole spectrum of Lyapunov exponents.

    *Authors*

    - Dominique Makowski (https://github.com/DominiqueMakowski)
    - Christopher Schölzel (https://github.com/CSchoel)
    - tjugo (https://github.com/nikdon)
    - Quentin Geissmann (https://github.com/qgeissmann)

    *Dependencies*

    - nolds
    - numpy

    *See Also*

    - nolds package: https://github.com/CSchoel/nolds
    - pyEntropy package: https://github.com/nikdon/pyEntropy
    - pyrem package: https://github.com/gilestrolab/pyrem

    References
    -----------
    - Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological cybernetics, 77(5), 339-350.
    - Pierzchalski, M. Application of Higuchi Fractal Dimension in Analysis of Heart Rate Variability with Artificial and Natural Noise. Recent Advances in Systems Science.
    - Acharya, R., Bhat, P. S., Kannathal, N., Rao, A., & Lim, C. M. (2005). Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM, 26(2), 133-139.
    - Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
    - Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals. Physical review E, 71(2), 021906.
    """

    if tolerance == "default":
        tolerance = 0.2 * np.std(signal)

    # Initialize results storing
    complexity = {}

    # ------------------------------------------------------------------------------

    # Shannon
    if shannon is True:
        try:
            complexity["Entropy_Shannon"] = entropy_shannon(signal)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Shannon entropy."
            )
            complexity["Entropy_Shannon"] = np.nan

    # Sampen
    if sampen is True:
        try:
            complexity["Entropy_Sample"] = nolds.sampen(signal,
                                                        emb_dim,
                                                        tolerance,
                                                        dist="chebychev",
                                                        debug_plot=False,
                                                        plot_file=None)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute sample entropy (sampen)."
            )
            complexity["Entropy_Sample"] = np.nan

    # multiscale
    if multiscale is True:
        try:
            complexity["Entropy_Multiscale"] = entropy_multiscale(
                signal, emb_dim, tolerance)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Multiscale Entropy (MSE)."
            )
            complexity["Entropy_Multiscale"] = np.nan

    # spectral
    if spectral is True:
        try:
            complexity["Entropy_Spectral"] = entropy_spectral(
                signal, sampling_rate=sampling_rate, bands=bands)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Spectral Entropy."
            )
            complexity["Entropy_Spectral"] = np.nan

    # SVD
    if svd is True:
        try:
            complexity["Entropy_SVD"] = entropy_svd(signal,
                                                    tau=tau,
                                                    emb_dim=emb_dim)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute SVD Entropy."
            )
            complexity["Entropy_SVD"] = np.nan

# ------------------------------------------------------------------------------
# fractal_dim
    if correlation is True:
        try:
            complexity["Fractal_Dimension_Correlation"] = nolds.corr_dim(
                signal,
                emb_dim,
                rvals=None,
                fit="RANSAC",
                debug_plot=False,
                plot_file=None)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute fractal_dim."
            )
            complexity["Fractal_Dimension_Correlation"] = np.nan

    # higushi
    if higushi is True:
        try:
            complexity["Fractal_Dimension_Higushi"] = fd_higushi(signal, k_max)
        except:
            print("NeuroKit warning: complexity(): Failed to compute higushi.")
            complexity["Fractal_Dimension_Higushi"] = np.nan

    # petrosian
    if petrosian is True:
        try:
            complexity["Fractal_Dimension_Petrosian"] = fd_petrosian(signal)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute petrosian.")
            complexity["Fractal_Dimension_Petrosian"] = np.nan

# ------------------------------------------------------------------------------

# Fisher
    if fisher is True:
        try:
            complexity["Fisher_Information"] = fisher_info(signal,
                                                           tau=tau,
                                                           emb_dim=emb_dim)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Fisher Information."
            )
            complexity["Fisher_Information"] = np.nan

    # Hurst
    if hurst is True:
        try:
            complexity["Hurst"] = nolds.hurst_rs(signal,
                                                 nvals=None,
                                                 fit="RANSAC",
                                                 debug_plot=False,
                                                 plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute hurst.")
            complexity["Hurst"] = np.nan

    # DFA
    if dfa is True:
        try:
            complexity["DFA"] = nolds.dfa(signal,
                                          nvals=None,
                                          overlap=True,
                                          order=1,
                                          fit_trend="poly",
                                          fit_exp="RANSAC",
                                          debug_plot=False,
                                          plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute dfa.")
            complexity["DFA"] = np.nan

    # Lyap_r
    if lyap_r is True:
        try:
            complexity["Lyapunov_R"] = nolds.lyap_r(signal,
                                                    emb_dim=10,
                                                    lag=None,
                                                    min_tsep=None,
                                                    tau=tau,
                                                    min_vectors=20,
                                                    trajectory_len=20,
                                                    fit="RANSAC",
                                                    debug_plot=False,
                                                    plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute lyap_r.")
            complexity["Lyapunov_R"] = np.nan

    # Lyap_e
    if lyap_e is True:
        try:
            result = nolds.lyap_e(signal,
                                  emb_dim=10,
                                  matrix_dim=4,
                                  min_nb=None,
                                  min_tsep=0,
                                  tau=tau,
                                  debug_plot=False,
                                  plot_file=None)
            for i, value in enumerate(result):
                complexity["Lyapunov_E_" + str(i)] = value
        except:
            print("NeuroKit warning: complexity(): Failed to compute lyap_e.")
            complexity["Lyapunov_E"] = np.nan

    return (complexity)
Ejemplo n.º 16
0
def sig_dfa(sig):
    return nolds.dfa(sig)
def prepareLRMData(data):

    dg = pd.DataFrame(columns=[
        'uhid', 'dischargestatus', 'ecg_resprate_SE', 'ecg_resprate_DFA',
        'ecg_resprate_ADF', 'ecg_resprate_Mean', 'ecg_resprate_Var', 'spo2_SE',
        'spo2_DFA', 'spo2_ADF', 'spo2_Mean', 'spo2_Var', 'heartrate_SE',
        'heartrate_DFA', 'heartrate_ADF', 'heartrate_Mean', 'heartrate_Var',
        'peep_SE', 'peep_DFA', 'peep_ADF', 'peep_Mean', 'peep_Var', 'pip_SE',
        'pip_DFA', 'pip_ADF', 'pip_Mean', 'pip_Var', 'map_SE', 'map_DFA',
        'map_ADF', 'map_Mean', 'map_Var', 'tidalvol_SE', 'tidalvol_DFA',
        'tidalvol_ADF', 'tidalvol_Mean', 'tidalvol_Var', 'minvol_SE',
        'minvol_DFA', 'minvol_ADF', 'minvol_Mean', 'minvol_Var', 'ti_SE',
        'ti_DFA', 'ti_ADF', 'ti_Mean', 'ti_Var', 'fio2_SE', 'fio2_DFA',
        'fio2_ADF', 'fio2_Mean', 'fio2_Var', 'abdomen_girth', 'urine',
        'totalparenteralvolume', 'new_ph', 'gender', 'birthweight',
        'birthlength', 'birthheadcircumference', 'inout_patient_status',
        'gestation', 'baby_type', 'central_temp', 'apgar_onemin',
        'apgar_fivemin', 'apgar_tenmin', 'motherage', 'conception_type',
        'mode_of_delivery', 'steroidname', 'numberofdose', 'rbs', 'temp',
        'currentdateweight', 'currentdateheight', 'tpn-tfl', 'mean_bp',
        'sys_bp', 'dia_bp', 'abd_difference', 'stool_day_total',
        'total_intake', 'typevalue_Antibiotics', 'typevalue_Inotropes'
    ])

    for i in data.uhid.unique():
        try:
            print(i)
            t = data[data['uhid'] == i]
            t.fillna(t.mean(), inplace=True)
            t.fillna(0, inplace=True)
            #t = t.apply(pd.to_numeric, errors='coerce')
            dg = dg.append(
                {
                    'uhid':
                    i,
                    'dischargestatus':
                    t['dischargestatus'].iloc[0],
                    'ecg_resprate_SE':
                    sample_entropy(t.ecg_resprate, order=2,
                                   metric='chebyshev'),
                    'ecg_resprate_DFA':
                    nolds.dfa(t.ecg_resprate),
                    'ecg_resprate_ADF':
                    adfuller(t.ecg_resprate)[0],
                    'ecg_resprate_Mean':
                    np.mean(t.ecg_resprate),
                    'ecg_resprate_Var':
                    np.var(t.ecg_resprate),
                    'spo2_SE':
                    sample_entropy(t.spo2, order=2, metric='chebyshev'),
                    'spo2_DFA':
                    nolds.dfa(t.spo2),
                    'spo2_ADF':
                    adfuller(t.spo2)[0],
                    'spo2_Mean':
                    np.mean(t.spo2),
                    'spo2_Var':
                    np.var(t.spo2),
                    'heartrate_SE':
                    sample_entropy(t.heartrate, order=2, metric='chebyshev'),
                    'heartrate_DFA':
                    nolds.dfa(t.heartrate),
                    'heartrate_ADF':
                    adfuller(t.heartrate)[0],
                    'heartrate_Mean':
                    np.mean(t.heartrate),
                    'heartrate_Var':
                    np.var(t.heartrate),
                    'peep_SE':
                    sample_entropy(t.peep, order=2, metric='chebyshev'),
                    'peep_DFA':
                    nolds.dfa(t.peep),
                    'peep_ADF':
                    adfuller(t.peep)[0],
                    'peep_Mean':
                    np.mean(t.peep),
                    'peep_Var':
                    np.var(t.peep),
                    'pip_SE':
                    sample_entropy(t.pip, order=2, metric='chebyshev'),
                    'pip_DFA':
                    nolds.dfa(t.pip),
                    'pip_ADF':
                    adfuller(t.pip)[0],
                    'pip_Mean':
                    np.mean(t.pip),
                    'pip_Var':
                    np.var(t.pip),
                    'map_SE':
                    sample_entropy(t.map, order=2, metric='chebyshev'),
                    'map_DFA':
                    nolds.dfa(t.map),
                    'map_ADF':
                    adfuller(t.map)[0],
                    'map_Mean':
                    np.mean(t.map),
                    'map_Var':
                    np.var(t.map),
                    'tidalvol_SE':
                    sample_entropy(t.tidalvol, order=2, metric='chebyshev'),
                    'tidalvol_DFA':
                    nolds.dfa(t.tidalvol),
                    'tidalvol_ADF':
                    adfuller(t.tidalvol)[0],
                    'tidalvol_Mean':
                    np.mean(t.tidalvol),
                    'tidalvol_Var':
                    np.var(t.tidalvol),
                    'minvol_SE':
                    sample_entropy(t.minvol, order=2, metric='chebyshev'),
                    'minvol_DFA':
                    nolds.dfa(t.minvol),
                    'minvol_ADF':
                    adfuller(t.minvol)[0],
                    'minvol_Mean':
                    np.mean(t.minvol),
                    'minvol_Var':
                    np.var(t.minvol),
                    'ti_SE':
                    sample_entropy(t.ti, order=2, metric='chebyshev'),
                    'ti_DFA':
                    nolds.dfa(t.ti),
                    'ti_ADF':
                    adfuller(t.ti)[0],
                    'ti_Mean':
                    np.mean(t.ti),
                    'ti_Var':
                    np.var(t.ti),
                    'fio2_SE':
                    sample_entropy(t.fio2, order=2, metric='chebyshev'),
                    'fio2_DFA':
                    nolds.dfa(t.fio2),
                    'fio2_ADF':
                    adfuller(t.fio2)[0],
                    'fio2_Mean':
                    np.mean(t.fio2),
                    'fio2_Var':
                    np.var(t.fio2),
                    'abdomen_girth':
                    np.mean(t.abdomen_girth),
                    'urine':
                    np.nansum(t.urine),
                    'totalparenteralvolume':
                    np.nansum(t.totalparenteralvolume),
                    'total_intake':
                    np.nansum(t.total_intake),
                    'new_ph':
                    np.mean(t.new_ph),
                    'gender':
                    t['gender'].iloc[0],
                    'birthweight':
                    t['birthweight'].iloc[0],
                    'birthlength':
                    t['birthlength'].iloc[0],
                    'birthheadcircumference':
                    t['birthheadcircumference'].iloc[0],
                    'inout_patient_status':
                    t['inout_patient_status'].iloc[0],
                    'gestation':
                    t['gestation'].iloc[0],
                    'baby_type':
                    t['baby_type'].iloc[0],
                    'central_temp':
                    np.nanmean(t.central_temp),
                    'apgar_onemin':
                    t['apgar_onemin'].iloc[0],
                    'apgar_fivemin':
                    t['apgar_fivemin'].iloc[0],
                    'apgar_tenmin':
                    t['apgar_tenmin'].iloc[0],
                    'motherage':
                    t['motherage'].iloc[0],
                    'conception_type':
                    t['conception_type'].iloc[0],
                    'mode_of_delivery':
                    t['mode_of_delivery'].iloc[0],
                    'numberofdose':
                    np.nansum(t.numberofdose),
                    'rbs':
                    np.nanmean(t.rbs),
                    'temp':
                    np.nanmean(t.temp),
                    'currentdateweight':
                    np.nanmean(t.currentdateweight),
                    'currentdateheight':
                    np.nanmean(t.currentdateheight),
                    'mean_bp':
                    np.nanmean(t.mean_bp),
                    'dia_bp':
                    np.nanmean(t.dia_bp),
                    'sys_bp':
                    np.nanmean(t.sys_bp),
                    'stool_day_total':
                    np.nanmean(t.stool_day_total),
                    'tpn-tfl':
                    np.nansum(t['tpn-tfl']),
                    'typevalue_Inotropes':
                    np.nansum(t.typevalue_Inotropes),
                    'typevalue_Antibiotics':
                    np.nansum(t.typevalue_Antibiotics),
                    'steroidname':
                    np.nansum(t.steroidname),
                },
                ignore_index=True)

        except Exception as e:
            print(e, "error")

    dg.to_csv('LRM_all_data.csv')

    return dg
Ejemplo n.º 18
0
emb_dim = 4
rolling = rolling_window(df.logR_ask, window_size, 10)
rolling = rolling_window(df_std.logR_ask, window_size, window_size)
rolling = rolling_window(df_QN_laplace_std.values.transpose()[0], window_size, window_size)
rolling_ns = rolling_window(df.ask, window_size, 10)
rolling_ts = rolling_window(df.index, window_size, 10)
df_ = pd.DataFrame(rolling)

sw_1 = rolling[1]
sw_1_ns = rolling[1]
nolds.lyap_r(sw_1, emb_dim = emb_dim)
nolds.lyap_e(sw_1, emb_dim = emb_dim)
nolds.sampen(sw_1, emb_dim= emb_dim)
nolds.hurst_rs(sw_1)
nolds.corr_dim(sw_1, emb_dim=emb_dim)
nolds.dfa(sw_1)
ent.shannon_entropy(sw_1) # is this even valid? we do not have any p_i states i ALSO IGNORES TEMPORAL ORDER - Practical consideration of permutation entropy
ent.sample_entropy(sw_1, sample_length = 10) #what is sample length?
#ent.multiscale_entropy(sw_1, sample_length = 10, tolerance = 0.1*np.std(sw_1)) # what is tolerance?

                      "Practical considerations of permutation entropy: A Tutorial review - how to choose parameters in permutation entropy"
ent.permutation_entropy(sw_1, m=8, delay = emd_dim )  #Reference paper above 
#ent.composite_multiscale_entropy()
lempel_ziv_complexity(sw_1)
gzip_compress_ratio(sw_1_ns, 9)


#https://www.researchgate.net/post/How_can_we_find_out_which_value_of_embedding_dimensions_is_more_accurate
#when choosing emb_dim for Takens, each dimension should have at least 10 dp ==> 10^1 == 1D, 10^2 == 2D, ..., 10^6 == 6D 

#FALSE NEAREST NEIGHBOR FOR DETERMINING MINIMAL EMBEDDING DIMENSION
Ejemplo n.º 19
0
def compute_params(df, number_of_epochs, structure):

    total_len = int(number_of_epochs * 20)  #in sec

    if structure == 'spindle':
        profile_type = 'energy'
        bin_width = 20
    elif structure == 'SWA':
        profile_type = 'energy'
        bin_width = 20

    df_hist = _get_histogram_values_in_sec(df,
                                           total_len,
                                           bin_width,
                                           profile_type=profile_type)  #in sec
    occ = df_hist.occurences
    time = df_hist.time
    dt = time[1] - time[0]

    if (structure == 'SWA') and (profile_type == 'percent'):
        occ[occ < 20.] = 0

    #power = np.sum(df['amplitude']**2) / total_len
    power = np.sum(df['modulus']) / total_len

    profile_dfa = nolds.dfa(occ)

    if len(df) > 2:
        if structure == 'spindle':
            frequency_mse = np.sum(
                (df['frequency'] - 13)**2) / (len(df['frequency']) - 1)
            frequency_var = np.var(df['frequency'], ddof=1)
            df_params = pd.DataFrame([[power, frequency_mse, frequency_var, \
                     profile_dfa]],
                   columns=['power_spindle', 'frequency_mse_spindle', 'frequency_var', \
                       'profile_dfa_spindle'])
        elif structure == 'SWA':
            df_hist_deep = _get_histogram_values_in_sec(df,
                                                        total_len,
                                                        20,
                                                        profile_type='percent')
            occ_deep_sleep = df_hist_deep.occurences
            min_deep_sleep = len(
                occ_deep_sleep[occ_deep_sleep >= 20.]) * 20. / 60.  #in min
            min_deep_sleep_50 = len(
                occ_deep_sleep[occ_deep_sleep >= 50.]) * 20. / 60.  #in min
            occ_deep_sleep[occ_deep_sleep < 20.] = 0.
            dfa_deep_sleep = nolds.dfa(occ_deep_sleep)
            deep_sleep_ratio = min_deep_sleep**dfa_deep_sleep
            occ_deep_sleep[occ_deep_sleep < 50.] = 0.
            dfa_deep_sleep_50 = nolds.dfa(occ_deep_sleep)
            deep_sleep_ratio_50 = min_deep_sleep_50**dfa_deep_sleep_50
            df_params = pd.DataFrame([[power, profile_dfa, min_deep_sleep, \
                     dfa_deep_sleep, deep_sleep_ratio, min_deep_sleep_50, \
                     dfa_deep_sleep_50, deep_sleep_ratio_50]],
                   columns=['power_SWA', 'profile_dfa_SWA', 'min_deep_sleep', \
                       'dfa_deep_sleep', 'deep_sleep_ratio', 'min_deep_sleep_50', \
                       'dfa_deep_sleep_50', 'deep_sleep_ratio_50'])
    else:
        if structure == 'spindle':
            df_params = pd.DataFrame([[0, np.inf, np.inf, \
                     0.5]],
                   columns=['power_spindle', 'frequency_mse_spindle', 'frequency_var', \
                       'profile_dfa_spindle'])
        elif structure == 'SWA':
            df_params = pd.DataFrame([[0, 0.5, 0, \
                     0.5, 0, 0, \
                     0.5, 0]],
                   columns=['power_SWA', 'profile_dfa_SWA', 'min_deep_sleep', \
                       'dfa_deep_sleep', 'deep_sleep_ratio', 'min_deep_sleep_50', \
                       'dfa_deep_sleep_50', 'deep_sleep_ratio_50'])

    return df_params
Ejemplo n.º 20
0
import pyflux as pf
from datetime import datetime
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

data = pd.read_csv('dataset-2007.csv', usecols=['wind direction at 100m (deg)', 'wind speed at 100m (m/s)', 'air temperature at 2m (K)', 'surface air pressure (Pa)', 'density at hub height (kg/m^3)'], skiprows=3)
data.columns = ['direction', 'speed', 'temp', 'pressure', 'density']
data.head(3)

D=data['speed'].values
T=D[0:105120:12]
F=T[0:2000]

h = nolds.dfa(F)
h

RS=nolds.hurst_rs(F)
RS

# calculate standard deviation of differenced series using various lags
lags = range(2, 20)
tau = [sqrt(std(subtract(F[lag:], F[:-lag]))) for lag in lags]

# plot on log-log scale
plot(log(lags), log(tau)); show()

# calculate Hurst as slope of log-log plot
m = polyfit(log(lags), log(tau), 1)
hurst = m[0]*2.0
Ejemplo n.º 21
0
            #else:
            #    return_exmo = None
            #    return_exmos.append(return_exmo)
            if(row[6] != ''):
                return_binance = np.float(row[6])
                return_binances.append(return_binance) 
            #else:
            #    return_binance = None
            #    return_binances.append(return_binance)

#calculating the bds test for coinbase exchange
i = 0
while((i + size) < len(return_coinbases)):
    temp1 = return_coinbases[i:i + size]
    date1 = dates[i:i+size]
    dfa_coinbase = nolds.dfa(temp1)
    H_coinbases.append(dfa_coinbase)
    temp_coinbase_date = dates[i]
    Hdate_coinbases.append(temp_coinbase_date)
    Ljung(temp1,date1)
    flag_coinbase = flag_coinbase + 1
    i = i + step

#calculating the bds test for exmo exchange
j = 0
while((j + size) < len(return_exmos)):
    temp2 = return_exmos[j:j + size]
    date2=dates[j:j+size]
    dfa_exmo = nolds.dfa(temp2)
    Ljung(temp2,date2)
    H_exmos.append(dfa_exmo)
Ejemplo n.º 22
0
def eeg_fractal_dim(epochs, entropy=True, hurst=True, dfa=False, lyap_r=False, lyap_e=False):
    """
    """
    clock = Time()

    df = epochs.to_data_frame(index=["epoch", "time", "condition"])

    # Separate indexes
    index = df.index.tolist()
    epochs = []
    times = []
    events = []
    for i in index:
        epochs.append(i[0])
        times.append(i[1])
        events.append(i[2])



    data = {}
    if entropy == True:
        data["Entropy"] = {}
    if hurst == True:
        data["Hurst"] = {}
    if dfa == True:
        data["DFA"] = {}
    if lyap_r == True:
        data["Lyapunov_R"] = {}
    if lyap_e == True:
        data["Lyapunov_E"] = {}


    clock.reset()
    for epoch in set(epochs):
        subset = df.loc[epoch]

        if entropy == True:
            data["Entropy"][epoch] = []
        if hurst == True:
            data["Hurst"][epoch] = []
        if dfa == True:
            data["DFA"][epoch] = []
        if lyap_r == True:
            data["Lyapunov_R"][epoch] = []
        if lyap_e == True:
            data["Lyapunov_E"][epoch] = []



        for channel in subset:
            if entropy == True:
                data["Entropy"][epoch].append(nolds.sampen(subset[channel]))
            if hurst == True:
                data["Hurst"][epoch].append(nolds.hurst_rs(subset[channel]))
            if dfa == True:
                data["DFA"][epoch].append(nolds.dfa(subset[channel]))
            if lyap_r == True:
                data["Lyapunov_R"][epoch].append(nolds.lyap_r(subset[channel]))
            if lyap_e == True:
                data["Lyapunov_E"][epoch].append(nolds.lyap_e(subset[channel]))

        if entropy == True:
            data["Entropy"][epoch] = np.mean(data["Entropy"][epoch])
        if hurst == True:
            data["Hurst"][epoch] = np.mean(data["Hurst"][epoch])
        if dfa == True:
            data["DFA"][epoch] = np.mean(data["DFA"][epoch])
        if lyap_r == True:
            data["Lyapunov_R"][epoch] = np.mean(data["Lyapunov_R"][epoch])
        if lyap_e == True:
            data["Lyapunov_E"][epoch] = np.mean(data["Lyapunov_E"][epoch])


        time = clock.get(reset=False)/1000
        time = time/(epoch+1)
        time = (time * (len(set(epochs))-epoch))/60
        print(str(round((epoch+1)/len(set(epochs))*100,2)) + "% complete, remaining time: " + str(round(time, 2)) + 'min')

    df = pd.DataFrame.from_dict(data)

    list_events = []
    for i in range(len(events)):
        list_events.append(events[i] + "_" + str(epochs[i]))

    list_events = list_events[np.where(find_following_duplicates(list_events))]
    list_events = [re.sub('_\d+', '', i) for i in list_events]
    df["Epoch"] = list_events
    return(df)
Ejemplo n.º 23
0
def dfa(nn=None,
        rpeaks=None,
        short=None,
        long=None,
        show=True,
        figsize=None,
        legend=True):
    """Conducts Detrended Fluctuation Analysis for short and long-term fluctuation of an NNI series.

	References: [Joshua2008][Kuusela2014][Fred2017]
	Docs:		https://pyhrv.readthedocs.io/en/latest/_pages/api/nonlinear.html#sample-entropy-sample-entropy

	Parameters
	----------
	nn : array
		NN intervals in [ms] or [s].
	rpeaks : array
		R-peak times in [ms] or [s].
	short : array, 2 elements
		Interval limits of the short term fluctuations (default: None: [4, 16]).
	long : array, 2 elements
		Interval limits of the long term fluctuations (default: None: [17, 64]).
	show : bool
		If True, shows DFA plot (default: True)
	legend : bool
		If True, adds legend with alpha1 and alpha2 values to the DFA plot (default: True)

	Returns (biosppy.utils.ReturnTuple Object)
	------------------------------------------
	[key : format]
		Description.
	dfa_short : float
		Alpha value of the short term fluctuations
	dfa_long : float
		Alpha value of the long term fluctuations
	dfa_plot : matplotlib plot figure
		Matplotlib plot figure of the DFA

	"""
    # Check input values
    nn = pu.check_input(nn, rpeaks)

    # Check intervals
    short = pu.check_interval(short, default=(4, 16))
    long = pu.check_interval(long, default=(17, 64))

    # Create arrays
    short = range(short[0], short[1] + 1)
    long = range(long[0], long[1] + 1)

    # Prepare plot
    if figsize is None:
        figsize = (6, 6)
    fig = plt.figure(figsize=figsize)
    ax = fig.add_subplot(111)
    ax.set_title('Detrended Fluctuation Analysis (DFA)')
    ax.set_xlabel('log n [beats]')
    ax.set_ylabel('log F(n)')

    # try:
    # Compute alpha values
    try:
        alpha1, dfa_short = nolds.dfa(nn,
                                      short,
                                      debug_data=True,
                                      overlap=False)
        alpha2, dfa_long = nolds.dfa(nn, long, debug_data=True, overlap=False)
    except ValueError:
        # If DFA could not be conducted due to insufficient number of NNIs, return an empty graph and 'nan' for alpha1/2
        warnings.warn(
            "Not enough NNI samples for Detrended Fluctuations Analysis.")
        ax.axis([0, 1, 0, 1])
        ax.text(0.5,
                0.5,
                '[Insufficient number of NNI samples for DFA]',
                horizontalalignment='center',
                verticalalignment='center')
        alpha1, alpha2 = 'nan', 'nan'
    else:
        # Plot DFA results if number of NNI were sufficent to conduct DFA
        # Plot short term DFA
        vals, flucts, poly = dfa_short[0], dfa_short[1], np.polyval(
            dfa_short[2], dfa_short[0])
        label = r'$ \alpha_{1}: %0.2f$' % alpha1
        ax.plot(vals, flucts, 'bo', markersize=1)
        ax.plot(vals, poly, 'b', label=label, alpha=0.7)

        # Plot long term DFA
        vals, flucts, poly = dfa_long[0], dfa_long[1], np.polyval(
            dfa_long[2], dfa_long[0])
        label = r'$ \alpha_{2}: %0.2f$' % alpha2
        ax.plot(vals, flucts, 'go', markersize=1)
        ax.plot(vals, poly, 'g', label=label, alpha=0.7)

        # Add legend
        if legend:
            ax.legend()
        ax.grid()

    # Plot axis
    if show:
        plt.show()

    # Output
    args = (fig, alpha1, alpha2, short, long)
    return biosppy.utils.ReturnTuple(args,
                                     ('dfa_plot', 'dfa_alpha1', 'dfa_alpha2',
                                      'dfa_alpha1_beats', 'dfa_alpha2_beats'))
Ejemplo n.º 24
0
def pdfret(x, xm, t, sl, z, beta, q):

    val2 = np.float(1 / nolds.dfa(k1.Close))
    global lim
    return -(1 / z) * (t**val2) * (1 + beta * (q - 1) *
                                   ((x - xm) * (t**val2))**2)**(-1 / (q - 1))
Ejemplo n.º 25
0
def complexity(signal,
               shannon=True,
               sampen=True,
               multiscale=True,
               fractal_dim=True,
               hurst=True,
               dfa=True,
               lyap_r=False,
               lyap_e=False,
               emb_dim=2,
               tolerance="default"):
    """
    Returns several chaos/complexity indices of a signal (including entropy, fractal dimensions, Hurst and Lyapunov exponent etc.).

    Parameters
    ----------
    signal : list or array
        List or array of values.
    shannon : bool
        Computes Shannon entropy.
    sampen : bool
        Computes approximate sample entropy (sampen) using Chebychev and Euclidean distances.
    multiscale : bool
        Computes multiscale entropy (MSE). Note that it uses the 'euclidean' distance.
    fractal_dim : bool
        Computes the fractal (correlation) dimension.
    hurst : bool
        Computes the Hurst exponent.
    dfa : bool
        Computes DFA.
    lyap_r : bool
        Computes Positive Lyapunov exponents (Rosenstein et al. (1993) method).
    lyap_e : bool
        Computes Positive Lyapunov exponents (Eckmann et al. (1986) method).
    emb_dim : int
        The embedding dimension (*m*, the length of vectors to compare). Used in sampen and fractal_dim.
    tolerance : float
        Distance *r* threshold for two template vectors to be considered equal. Default is 0.2*std(signal). Used in sampen and fractal_dim.

    Returns
    ----------
    complexity : dict
        Dict containing values for each indices.


    Example
    ----------
    >>> import neurokit as nk
    >>> import numpy as np
    >>>
    >>> signal = np.sin(np.log(np.random.sample(666)))
    >>> complexity = nk.complexity(signal)

    Notes
    ----------
    *Details*

    - **shannon entropy**: Entropy is a measure of unpredictability of the state, or equivalently, of its average information content.
    - **sample entropy (sampen)**: Measures the complexity of a time-series, based on approximate entropy. The sample entropy of a time series is defined as the negative natural logarithm of the conditional probability that two sequences similar for emb_dim points remain similar at the next point, excluding self-matches. A lower value for the sample entropy therefore corresponds to a higher probability indicating more self-similarity.
    - **multiscale entropy**: Multiscale entropy (MSE) analysis is a new method of measuring the complexity of finite length time series.
    - **fractal dimension**: A measure of the fractal (or correlation) dimension of a time series which is also related to complexity. The correlation dimension is a characteristic measure that can be used to describe the geometry of chaotic attractors. It is defined using the correlation sum C(r) which is the fraction of pairs of points X_i in the phase space whose distance is smaller than r.
    - **hurst**: The Hurst exponent is a measure of the "long-term memory" of a time series. It can be used to determine whether the time series is more, less, or equally likely to increase if it has increased in previous steps. This property makes the Hurst exponent especially interesting for the analysis of stock data.
    - **dfa**: DFA measures the Hurst parameter H, which is very similar to the Hurst exponent. The main difference is that DFA can be used for non-stationary processes (whose mean and/or variance change over time).
    - **lyap**: Positive Lyapunov exponents indicate chaos and unpredictability. Provides the algorithm of Rosenstein et al. (1993) to estimate the largest Lyapunov exponent and the algorithm of Eckmann et al. (1986) to estimate the whole spectrum of Lyapunov exponents.


    *Authors*

    - Christopher Schölzel (https://github.com/CSchoel)
    - tjugo (https://github.com/nikdon)
    - Dominique Makowski (https://github.com/DominiqueMakowski)

    *Dependencies*

    - nolds
    - numpy

    *See Also*

    - nolds package: https://github.com/CSchoel/nolds
    - pyEntropy package: https://github.com/nikdon/pyEntropy

    References
    -----------
    - Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
    - Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals. Physical review E, 71(2), 021906.
    """

    if tolerance == "default":
        tolerance = 0.2 * np.std(signal)

    # Initialize results storing
    complexity = {}

    # Shannon
    if shannon is True:
        try:
            complexity["Shannon_Entropy"] = entropy_shannon(signal)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Shannon entropy."
            )
            complexity["Shannon_Entropy"] = np.nan

    # Sampen
    if sampen is True:
        try:
            complexity["Sample_Entropy_Chebychev"] = nolds.sampen(
                signal,
                emb_dim,
                tolerance,
                dist="chebychev",
                debug_plot=False,
                plot_file=None)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute sample entropy (sampen) using chebychev distance."
            )
            complexity["Sample_Entropy_Chebychev"] = np.nan
        try:
            complexity["Sample_Entropy_Euclidean"] = nolds.sampen(
                signal,
                emb_dim,
                tolerance,
                dist="euclidean",
                debug_plot=False,
                plot_file=None)
        except:
            try:
                complexity["Sample_Entropy_Euclidean"] = nolds.sampen(
                    signal,
                    emb_dim,
                    tolerance,
                    dist="euler",
                    debug_plot=False,
                    plot_file=None)
            except:
                print(
                    "NeuroKit warning: complexity(): Failed to compute sample entropy (sampen) using euclidean distance."
                )
                complexity["Sample_Entropy_Euclidean"] = np.nan

    # multiscale
    if multiscale is True:
        try:
            complexity["Multiscale_Entropy"] = entropy_multiscale(
                signal, emb_dim, tolerance)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute Multiscale Entropy (MSE)."
            )
            complexity["Multiscale_Entropy"] = np.nan

    # fractal_dim
    if fractal_dim is True:
        try:
            complexity["Fractal_Dimension"] = nolds.corr_dim(signal,
                                                             emb_dim,
                                                             rvals=None,
                                                             fit="RANSAC",
                                                             debug_plot=False,
                                                             plot_file=None)
        except:
            print(
                "NeuroKit warning: complexity(): Failed to compute fractal_dim."
            )
            complexity["Fractal_Dimension"] = np.nan

    # Hurst
    if hurst is True:
        try:
            complexity["Hurst"] = nolds.hurst_rs(signal,
                                                 nvals=None,
                                                 fit="RANSAC",
                                                 debug_plot=False,
                                                 plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute hurst.")
            complexity["Hurst"] = np.nan

    # DFA
    if dfa is True:
        try:
            complexity["DFA"] = nolds.dfa(signal,
                                          nvals=None,
                                          overlap=True,
                                          order=1,
                                          fit_trend="poly",
                                          fit_exp="RANSAC",
                                          debug_plot=False,
                                          plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute dfa.")
            complexity["DFA"] = np.nan

    # Lyap_r
    if lyap_r is True:
        try:
            complexity["Lyapunov_R"] = nolds.lyap_r(signal,
                                                    emb_dim=10,
                                                    lag=None,
                                                    min_tsep=None,
                                                    tau=1,
                                                    min_vectors=20,
                                                    trajectory_len=20,
                                                    fit="RANSAC",
                                                    debug_plot=False,
                                                    plot_file=None)
        except:
            print("NeuroKit warning: complexity(): Failed to compute lyap_r.")
            complexity["Lyapunov_R"] = np.nan

    # Lyap_e
    if lyap_e is True:
        try:
            result = nolds.lyap_e(signal,
                                  emb_dim=10,
                                  matrix_dim=4,
                                  min_nb=None,
                                  min_tsep=0,
                                  tau=1,
                                  debug_plot=False,
                                  plot_file=None)
            for i, value in enumerate(result):
                complexity["Lyapunov_E_" + str(i)] = value
        except:
            print("NeuroKit warning: complexity(): Failed to compute lyap_e.")
            complexity["Lyapunov_E"] = np.nan

    return (complexity)
Ejemplo n.º 26
0
def scaledpdfret(x, t, xm, sl, z, beta, q):
    global k1
    val1 = 1 / (nolds.dfa(k1.Close))
    return -(1 / z) * (1 + beta * (q - 1) * (x / (t**val1) - xm /
                                             (t**val1))**2)**(-1 / (q - 1))
Ejemplo n.º 27
0
def dfa(y):
    # Detrended fluctuation analysis
    return nolds.dfa(y)
Ejemplo n.º 28
0
    def processSingleFile(self, file):
        self.logger.log(
            "INFO",
            "EXTRACTING FEATURE {} FROM FILE: {}".format(self.algorithm, file))

        res = self.readFile(file)

        if (self.algorithm == 'DfaMeanCorr'):
            feature = np.zeros([378, 1])
        else:
            feature = np.zeros([26, 1])

        if (res["error"]):
            return (feature)
        if (res["data"].shape[0] == 0):
            return (feature)
        if (res["data"].shape[1] < 10):
            return (feature)
        data = self.prepareMetrics(res["data"])
        try:
            if (self.algorithm == 'correlation'):
                feature = self.correlation(data)

            elif (self.algorithm == 'dfa'):
                feature = np.zeros([26, 1])
                for i in range(0, data.shape[1]):
                    feature[i] = nolds.dfa(data[:, i])

            elif (self.algorithm == 'sampen'):
                feature = np.zeros([26, 1])
                for i in range(0, data.shape[1]):
                    feature[i] = nolds.sampen(data[:,i],emb_dim=2,\
         tolerance=0.2*np.std(data[:,i]))

            elif (self.algorithm == 'hurst'):
                feature = np.zeros([26, 1])
                for i in range(0, data.shape[1]):
                    feature[i] = nolds.hurst_rs(data[:, i])

            elif (self.algorithm == 'DfaMeanCorr'):
                cache_filename = file + ".pkl"
                if (os.path.exists(cache_filename)):
                    self.logger.log("INFO", "CACHE FOUND, USING IT")
                    file = open(cache_filename, 'rb')
                    cache = pickle.load(file)
                else:
                    cache = {}
                if (not "corr" in cache):
                    featureCorr = self.correlation(data)
                    cache["corr"] = featureCorr
                else:
                    featureCorr = cache["corr"]
                if (not "cons" in cache):
                    featureConsump = self.consumption(res["data"])
                    cache["featureConsump"] = featureConsump
                else:
                    featureConsump = cache["cons"]
                if (not "dfa" in cache):
                    featureDfa = np.zeros([26, 1])
                    for i in range(0, int(data.shape[1])):
                        featureDfa[i] = nolds.dfa(data[:, i])
                    cache["dfa"] = featureDfa
                else:
                    featureDfa = cache["dfa"]
                if (not "entropy" in cache):
                    featureEntropy = np.zeros([26, 1])
                    for i in range(0, int(data.shape[1])):
                        featureEntropy[i] = nolds.sampen(data[:, i], 2)
                    cache["entropy"] = featureEntropy

                with open(cache_filename, 'wb') as output:
                    pickle.dump(cache, output, pickle.HIGHEST_PROTOCOL)
                feature = np.vstack(
                    [featureDfa, featureConsump, featureEntropy, featureCorr])

        except Exception as e:
            self.logger.log("ERROR","ERROR EXTRACTING FEATURE {} FROM FILE: {}, SKIPPING"\
       .format(self.algorithm,file))
            print(e)
            traceback.print_exc()
            for i in range(0, feature.shape[0]):
                feature[i] = 0
        return (feature)
Ejemplo n.º 29
0
                        0.0001, 0.02, 1.3, 1.6)
    apq11Shimmer = call([sound, pointProcess], "Get shimmer (apq11)", 0, 0,
                        0.0001, 0.02, 1.3, 1.6)
    ddaShimmer = call([sound, pointProcess], "Get shimmer (dda)", 0, 0, 0.0001,
                      0.02, 1.3, 1.6)
    voice_report = call([sound, pitch, pointProcess], "Voice report", 0.0, 0.0,
                        f0min, f0max, 1.3, 1.6, 0.03, 0.45)

    return meanF0, stdevF0, localJitter, localabsoluteJitter, rapJitter, ppq5Jitter, ddpJitter, localShimmer, localdbShimmer, apq3Shimmer, aqpq5Shimmer, apq11Shimmer, ddaShimmer, voice_report


AudioFile_path = sys.argv[1]
sample_rate, samples = wavfile.read(AudioFile_path)
frequencies, times, spectogram = signal.spectrogram(samples, sample_rate)
sound = parselmouth.Sound(AudioFile_path)
DFA = nolds.dfa(times)
PPE = entropy.shannon_entropy(times)
(meanF0, stdevF0, localJitter, localabsoluteJitter, rapJitter, ppq5Jitter,
 ddpJitter, localShimmer, localdbShimmer, apq3Shimmer, aqpq5Shimmer,
 apq11Shimmer, ddaShimmer,
 voice_report) = measurePitch(sound, 75, 500, "Hertz")

voice_report = voice_report.strip()

hnr = voice_report[984:989]
nhr = voice_report[941:953]

# from sklearn.preprocessing import MinMaxScaler
# sc = MinMaxScaler()
# DFA = sc.fit_transform(DFA)
# PPE = sc.fit_transform(PPE)
Ejemplo n.º 30
0
import nolds
import numpy as np

rwalk = np.cumsum(np.random.random(1000))
print("fractal {}".format(nolds.dfa(rwalk)))
print("Lup {}".format(nolds.lyap_e(rwalk)))
print("Lup {}".format(nolds.lyap_r(rwalk)))
print("Hurst {}".format(nolds.hurst_rs(rwalk)))