Ejemplo n.º 1
0
def getFeatures(img):
    featureList = []
    cv2.imshow("Before ", img)
    img = normalizer.getNormalizedImage(img)
    #cv2.imshow("SEEM ME AFTER nomralization",img)
    #cv2.waitKey()
    zones = getZonesValue(img)
    #fourierT = getFourierTransformvalues(img)
    #print(fourierT)

    wavelet = waveletTransform(img)

    for i in zones:
        featureList.append(i)
    featureList += crossings(img)
    featureList.append(getMoment(img))

    # for i in fourierT:
    #    featureList.append(i)
    for i in img:
        x = get_bit_reversed_list(i)
        for j in x:
            featureList.append(j)

    for i in wavelet:
        featureList.append(i)

    return featureList
Ejemplo n.º 2
0
def getFeatures(img):
    featureList=[]
    img=normalizer.getNormalizedImage(img)
    intersections = getCrossing(img)
    for i in intersections :
        featureList.append(i)
    '''
    zones=getZonesValue(img)
    for i in zones:
        featureList.append(i)
    '''
    return featureList
Ejemplo n.º 3
0
def getFeatures(img):
    featureList = []
    #    cv2.imshow("SEEM ME Before nomralization", img)
    img = normalizer.getNormalizedImage(img)
    #    cv2.imshow("SEEM ME AFTER nomralization",img)
    #    cv2.waitKey()
    zones = getZonesValue(img)

    for i in zones:
        featureList.append(i)
    featureList += crossings(img)
    featureList += (getMoment(img))
    featureList += getEndPointsNIntersectionPoints(img)
    #    featureList+=getFourierTransformvalues(img).tolist()

    return featureList
Ejemplo n.º 4
0
        print(chr(eclf1.predict(Features.getFeatures(croppedImage))[0]),
              end=" ")

        stri = "Candidates after classification, probability wise :::  \n"
        for i in range(0, min(5, len(sortedLetters))):
            stri += sortedLetters[i][0] + "(" + str(
                round(sortedLetters[i][1], 2)) + ")" + " , "

        fig = plt.figure(figsize=(4.6, 4.6))
        ax = fig.add_subplot(1, 2, 1)
        ax.imshow(cv2.resize(croppedImage, (24, 24)), cmap='gray')
        ax.set_title("Segmented character")
        # plt.imshow(croppedImage,cmap='gray')
        ax = fig.add_subplot(122)
        ax.imshow(normalizer.getNormalizedImage(croppedImage), cmap='gray')
        ax.set_title("Thinned Image")
        plt.suptitle(stri)
        plt.show()
    print()
'''extractingLines.doit(image)

components=componentGetter.getComponents(image)
print(len(components))
per=[]
pery=[0 for i in range(len(components))]
cenx=[];ceny=[]
for i in components:
    per.append(len(i))
    x=0.0;y=0.0
    for j in i: