Ejemplo n.º 1
0
def V_LSR(RA, dec, dss, timedate):
    """
  Computes the velocity of the local standard of rest w.r.t. the observer
  
  @param ra : J2000 right ascension as a float or as "12h34m56.78s"
  @type  ra : float or str
  
  @param dec : J2000 declination as a float or as "-12d34m56.78s"
  @type  dec : float or str
  
  @param observer : DSN station
  @type  observer : int
  
  @param timedate : date/time of the observation
  @type  timedate : datetime object
  """
    logger.debug("V_LSR: entered with coord types %s and %s", type(RA),
                 type(dec))
    if type(RA) == str and type(dec) == str:
        skypos = coord.SkyCoord(RA, dec, unit=(u.hourangle, u.deg))
    elif type(RA) == float and type(dec) == float:
        skypos = coord.SkyCoord(RA * u.hour, dec * u.degree)
    else:
        raise RuntimeError(RA, dec, "cannot be parsed")
    logger.debug("V_LSR: sky pos: %s", skypos)
    ra2000, dec2000 = skypos.ra.hour, skypos.dec.deg
    logger.debug("V_LSR: J2000 coordinates are %f, %f", ra2000, dec2000)
    sourcename = "%5.2f%+5.2f" % (ra2000, dec2000)
    cat_entry = novas.make_cat_entry(sourcename, "", 0, ra2000, dec2000, 0, 0,
                                     0, 0)
    source = novas.make_object(2, 0, sourcename, cat_entry)
    station = Astronomy.DSN_coordinates.DSS(dss)
    logger.debug("V_LSR: station lat=%f", station.lat * 180 / math.pi)
    logger.debug("V_LSR: station long=%f", station.lon * 180 / math.pi)
    if station.long > math.pi:
        longitude = station.long - 2 * math.pi
    elif station.long < math.pi:
        longitude = station.long + 2 * math.pi
    else:
        longitude = station.long
    observer = novas.make_observer_on_surface(station.lat * 180 / math.pi,
                                              longitude * 180 / math.pi,
                                              station.elev, 0, 0)
    jd = novas.julian_date(timedate.year, timedate.month, timedate.day,
                           timedate.hour + timedate.minute / 60.)
    mjd = DatesTimes.MJD(timedate.year, timedate.month, timedate.day)
    earth = novas.make_object(0, 3, 'Earth', None)
    urthpos, urthvel = novas.ephemeris((jd, 0), earth, origin=0)
    (obspos, obsvel) = novas.geo_posvel(jd, 0, observer, 0)
    totvel = tuple(numpy.array(urthvel) + numpy.array(obsvel))
    (srcpos, srcvel) = novas.starvectors(cat_entry)
    V = novas.rad_vel(source, srcpos, srcvel, totvel, 0, 0, 0)
    logger.debug("V_LSR: velocity of observer w.r.t. Sun= %.2f", V)
    return V + Astronomy.v_sun(mjd, ra2000 / 15., dec2000)
Ejemplo n.º 2
0
def test_starvectors():
    epsilon = 1e-10

    p, v = c.starvectors(c.make_cat_entry(
            'POLARIS', 'HIP', 0, 2.530301028, 89.264109444,
            44.22, -11.75, 7.56, -17.4))

    star = starlib.Star(2.530301028, 89.264109444,
                        44.22, -11.75, 7.56, -17.4)

    eq(p, star._position.reshape(3), epsilon)
    eq(v, star._velocity.reshape(3), epsilon)
Ejemplo n.º 3
0
def test_starvectors():
    p, v = c.starvectors(c.make_cat_entry(
            'POLARIS', 'HIP', 0, 2.530301028, 89.264109444,
            44.22, -11.75, 7.56, -17.4))

    star = starlib.Star(2.530301028, 89.264109444,
                        44.22, -11.75, 7.56, -17.4)

    p_epsilon = 1e-10  # AU; 16 digits of agreement
    v_epsilon = 1e-17  # AU/day; 15 digits of agreement

    eq(p, star._position, p_epsilon)
    eq(v, star._velocity, v_epsilon)
def output_subroutine_tests(dates):
    date_floats = [d for d in dates if not isinstance(d, list)]
    delta_t_floats = [+39.707, +57.1136, +63.8285, +66.7846]

    def shorter_cal_date(jd):
        y, m, d, h = novas.cal_date(jd)
        return y, m, d + h / 24.0 - 0.5

    for i, jd in enumerate(date_floats):
        cal_date = call(shorter_cal_date, jd)
        output(
            locals(), """\
            def test_calendar_date_{i}():
                compare(timelib.calendar_date({jd!r}), array({cal_date}), 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.era(jd)
        output(
            locals(), """\
            def test_earth_rotation_angle_date{i}():
                compare(earthlib.earth_rotation_angle({jd!r}) * 360.0, {angle!r},
                        0.000001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        angles = novas.e_tilt(jd)
        output(
            locals(), """\
            def test_earth_tilt_date{i}(ts):
                compare(nutationlib.earth_tilt(ts.tdb_jd({jd!r})),
                        array({angles}), 0.00001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        terms = novas.ee_ct(jd, 0.0, 0)
        output(
            locals(), """\
            def test_equation_of_the_equinoxes_complimentary_terms_date{i}():
                compare(nutationlib.equation_of_the_equinoxes_complimentary_terms({jd!r}),
                        array({terms!r}), 0.0000000000000001 * arcsecond)
            """)

    vector = (1.1, 1.2, 1.3)
    tie1 = novas.frame_tie(vector, 0)
    tie2 = novas.frame_tie(vector, -1)
    output(
        locals(), """\
        def test_forward_frame_tie():
            compare(framelib.ICRS_to_J2000.dot({vector}), {tie1}, 1e-15)

        def test_reverse_frame_tie():
            compare(framelib.ICRS_to_J2000.T.dot({vector}), {tie2}, 1e-15)
        """)

    for i, jd in enumerate(date_floats):
        jcentury = (jd - T0) / 36525.0
        arguments = novas.fund_args(jcentury)
        output(
            locals(), """\
            def test_fundamental_arguments_date{i}():
                compare(nutationlib.fundamental_arguments({jcentury!r}),
                        array({arguments}), 0.000000002 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        psi, eps = nutation_module.iau2000a(jd, 0.0)
        psi *= 1e7 / ASEC2RAD
        eps *= 1e7 / ASEC2RAD
        output(
            locals(), """\
            def test_iau2000a_date{i}():
                compare(nutationlib.iau2000a({jd!r}),
                        array([{psi!r}, {eps!r}]), 0.001)
            """)

    for i, jd in enumerate(date_floats):
        psi, eps = nutation_module.iau2000b(jd, 0.0)
        psi *= 1e7 / ASEC2RAD
        eps *= 1e7 / ASEC2RAD
        output(
            locals(), """\
            def test_iau2000b_date{i}():
                compare(nutationlib.iau2000b({jd!r}),
                        array([{psi!r}, {eps!r}]), 0.001)
            """)

    for i, args in enumerate([
        (-4712, 1, 1, 0.0),
        (-4712, 3, 1, 0.0),
        (-4712, 12, 31, 0.5),
        (-241, 3, 25, 19.0),
        (530, 9, 27, 23.5),
        (1976, 3, 7, 12.5),
        (2000, 1, 1, 0.0),
    ]):
        jd = novas.julian_date(*args)
        output(
            locals(), """\
            def test_julian_date_function_date{i}():
                compare(timelib.julian_date{args}, {jd!r}, 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.mean_obliq(jd)
        output(
            locals(), """\
            def test_mean_obliquity_date{i}():
                compare(nutationlib.mean_obliquity({jd!r}),
                        {angle!r}, 0.0)  # arcseconds
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = nutation_function(jd, vector)
        output(
            locals(), """\
            def test_nutation_date{i}(ts):
                matrix = nutationlib.compute_nutation(ts.tdb_jd({jd!r}))
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-14)
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = novas.precession(T0, vector, jd)
        output(
            locals(), """\
            def test_precession_date{i}():
                matrix = precessionlib.compute_precession({jd!r})
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-15)
            """)

    for i, jd in enumerate(date_floats):
        result1 = novas.sidereal_time(jd, 0.0, 0.0, False, True)
        result2 = novas.sidereal_time(jd, 0.0, 99.9, False, True)
        output(
            locals(), """\
            def test_sidereal_time_on_date{i}():
                jd = load.timescale(delta_t=0.0).tt_jd({jd!r})
                compare(earthlib.sidereal_time(jd), {result1!r}, 1e-13)

            def test_sidereal_time_with_nonzero_delta_t_on_date{i}():
                jd = load.timescale(delta_t=99.9).tt_jd({jd!r} + 99.9 * one_second)
                compare(earthlib.sidereal_time(jd), {result2!r}, 1e-13)
            """)

    p, v = novas.starvectors(
        novas.make_cat_entry('POLARIS', 'HIP', 0, 2.530301028, 89.264109444,
                             44.22, -11.75, 7.56, -17.4))
    output(
        locals(), """\
        def test_star_vector():
            star = starlib.Star(ra_hours=2.530301028, dec_degrees=89.264109444,
                                ra_mas_per_year=44.22, dec_mas_per_year=-11.75,
                                parallax_mas=7.56, radial_km_per_s=-17.4)
            star.au_km = OLD_AU_KM
            star._compute_vectors()
            compare(star._position_au,
                    {p!r},
                    1e3 * meter)
            compare(star._velocity_au_per_d,
                    {v!r},
                    1e-3 * meter)  # TODO: was 1e-6 before switch to modern au
        """)

    atp = product([-5, -1, 15, 89.95], [10, 25], [1010, 1013.25])

    for i, (angle, temperature, pressure) in enumerate(atp):
        location = novas.make_on_surface(0.0, 0.0, 0, temperature, pressure)
        r = novas.refract(location, 90 - angle, 2)
        output(
            locals(), """\
            def test_refraction{i}():
                r = earthlib.refraction({angle}, {temperature}, {pressure})
                compare(r, {r!r}, 1e-9 * arcsecond)
            """)

    northpole = novas.make_on_surface(90.0, 0.0, 0.0, 10.0, 1010.0)

    for i, angle in enumerate([-90, -2, -1, 0, 1, 3, 9, 90]):
        alt, az = altaz_maneuver(T0, northpole, 0.0, angle, ref=2)
        output(
            locals(), """\
            def test_refract{i}():
                alt = earthlib.refract({angle!r}, 10.0, 1010.0)
                compare(alt, {alt!r}, 1e-9 * arcsecond)
            """)

    usno = novas.make_on_surface(38.9215, -77.0669, 92.0, 10.0, 1010.0)

    ra = 12.34
    for i, (tt, dec) in enumerate(product(date_floats, [56.78, -67.89])):
        alt, az = altaz_maneuver(tt, usno, ra, dec, ref=0)
        output(
            locals(), """\
            def test_from_altaz_{i}(earth):
                jd = load.timescale(delta_t=0.0).tt_jd({tt!r})
                usno = earth + Topos(
                    '38.9215 N', '77.0669 W', elevation_m=92.0)
                a = usno.at(jd).from_altaz(alt_degrees={alt!r}, az_degrees={az!r})
                ra, dec, distance = a.radec(epoch=jd)
                compare(ra.hours, {ra!r}, 1e-9 * arcsecond)
                compare(dec.degrees, {dec!r}, 1e-9 * arcsecond)
            """)

    for i, (tt, delta_t) in enumerate(zip(date_floats, delta_t_floats)):
        jd_low = xp = yp = 0.0
        vector = [1.1, 1.2, 1.3]
        ut1 = tt - delta_t * one_second
        result = novas.ter2cel(ut1, jd_low, delta_t, xp, yp, vector)
        output(
            locals(), """\
            def test_ITRF_to_GCRS_conversion_on_date{i}():
                jd = load.timescale(delta_t={delta_t!r}).tt_jd({tt!r})
                position = positionlib.ITRF_to_GCRS(jd, {vector!r})
                compare(position, {result!r}, 1e-13)
            """)

    for i, jd_tdb in enumerate(date_floats):
        result = novas.tdb2tt(jd_tdb)[1]
        output(
            locals(), """\
            def test_tdb_minus_tt_on_date{i}():
                result = timelib.tdb_minus_tt({jd_tdb!r})
                compare(result, {result!r}, 1e-16)
            """)
Ejemplo n.º 5
0
def output_subroutine_tests(dates):
    date_floats = [d for d in dates if not isinstance(d, list)]
    delta_t_floats = [+39.707, +57.1136, +63.8285, +66.7846]

    def shorter_cal_date(jd):
        y, m, d, h = novas.cal_date(jd)
        return y, m, d + h / 24.0 - 0.5

    for i, jd in enumerate(date_floats):
        cal_date = call(shorter_cal_date, jd)
        output(locals(), """\
            def test_calendar_date_{i}():
                compare(timelib.calendar_date({jd!r}), array({cal_date}), 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.era(jd)
        output(locals(), """\
            def test_earth_rotation_angle_date{i}():
                compare(earthlib.earth_rotation_angle({jd!r}) * 360.0, {angle},
                        0.000001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        angles = novas.e_tilt(jd)
        output(locals(), """\
            def test_earth_tilt_date{i}():
                compare(nutationlib.earth_tilt(JulianDate(tdb={jd!r})),
                        array({angles}), 0.00001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        terms = novas.ee_ct(jd, 0.0, 0)
        output(locals(), """\
            def test_equation_of_the_equinoxes_complimentary_terms_date{i}():
                compare(nutationlib.equation_of_the_equinoxes_complimentary_terms({jd!r}),
                        array({terms}), 0.0000000000000001 * arcsecond)
            """)

    vector = (1.1, 1.2, 1.3)
    tie1 = novas.frame_tie(vector, 0)
    tie2 = novas.frame_tie(vector, -1)
    output(locals(), """\
        def test_forward_frame_tie():
            compare(framelib.ICRS_to_J2000.dot({vector}), {tie1}, 1e-15)

        def test_reverse_frame_tie():
            compare(framelib.ICRS_to_J2000.T.dot({vector}), {tie2}, 1e-15)
        """)

    for i, jd in enumerate(date_floats):
        jcentury = (jd - T0) / 36525.0
        arguments = novas.fund_args(jcentury)
        output(locals(), """\
            def test_fundamental_arguments_date{i}():
                compare(nutationlib.fundamental_arguments({jcentury!r}),
                        array({arguments}), 0.000000002 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        psi, eps = nutation_module.iau2000a(jd, 0.0)
        psi *= 1e7 / ASEC2RAD
        eps *= 1e7 / ASEC2RAD
        output(locals(), """\
            def test_iau2000a_date{i}():
                compare(nutationlib.iau2000a({jd!r}),
                        array([{psi}, {eps}]), 0.001)
            """)

    for i, args in enumerate([
          (-4712, 1, 1, 0.0),
          (-4712, 3, 1, 0.0),
          (-4712, 12, 31, 0.5),
          (-241, 3, 25, 19.0),
          (530, 9, 27, 23.5),
          (1976, 3, 7, 12.5),
          (2000, 1, 1, 0.0),
          ]):
        jd = novas.julian_date(*args)
        output(locals(), """\
            def test_julian_date_function_date{i}():
                compare(timelib.julian_date{args}, {jd!r}, 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.mean_obliq(jd)
        output(locals(), """\
            def test_mean_obliquity_date{i}():
                compare(nutationlib.mean_obliquity({jd!r}),
                        {angle!r}, 0.0)  # arcseconds
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = nutation_function(jd, vector)
        output(locals(), """\
            def test_nutation_date{i}():
                matrix = nutationlib.compute_nutation(JulianDate(tdb={jd!r}))
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-14)
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = novas.precession(T0, vector, jd)
        output(locals(), """\
            def test_precession_date{i}():
                matrix = precessionlib.compute_precession({jd!r})
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-15)
            """)

    for i, jd in enumerate(date_floats):
        result1 = novas.sidereal_time(jd, 0.0, 0.0, False, True)
        result2 = novas.sidereal_time(jd, 0.0, 99.9, False, True)
        output(locals(), """\
            def test_sidereal_time_on_date{i}():
                jd = JulianDate(tt={jd!r})
                compare(earthlib.sidereal_time(jd), {result1!r}, 1e-13)

            def test_sidereal_time_with_nonzero_delta_t_on_date{i}():
                jd = JulianDate(tt={jd!r} + 99.9 * one_second, delta_t=99.9)
                compare(earthlib.sidereal_time(jd), {result2!r}, 1e-13)
            """)

    p, v = novas.starvectors(novas.make_cat_entry(
        'POLARIS', 'HIP', 0, 2.530301028, 89.264109444,
        44.22, -11.75, 7.56, -17.4))
    output(locals(), """\
        def test_star_vector():
            star = starlib.Star(ra_hours=2.530301028, dec_degrees=89.264109444,
                                ra_mas_per_year=44.22, dec_mas_per_year=-11.75,
                                parallax_mas=7.56, radial_km_per_s=-17.4)
            star.au_km = de405.jplephemeris.AU
            star._compute_vectors()
            compare(star._position_au,
                    {p!r},
                    1e3 * meter)
            compare(star._velocity_au_per_d,
                    {v!r},
                    1e-3 * meter)  # TODO: was 1e-6 before switch to modern au
        """)

    atp = product([-5, -1, 15, 89.95], [10, 25], [1010, 1013.25])

    for i, (angle, temperature, pressure) in enumerate(atp):
        location = novas.make_on_surface(0.0, 0.0, 0, temperature, pressure)
        r = novas.refract(location, 90 - angle, 2)
        output(locals(), """\
            def test_refraction{i}():
                r = earthlib.refraction({angle}, {temperature}, {pressure})
                compare(r, {r}, 0.001 * arcsecond)
            """)

    northpole = novas.make_on_surface(90.0, 0.0, 0.0, 10.0, 1010.0)

    for i, angle in enumerate([-90, -2, -1, 0, 1, 3, 9, 90]):
        alt, az = altaz_maneuver(T0, northpole, 0.0, angle, ref=2)
        output(locals(), """\
            def test_refract{i}():
                alt = earthlib.refract({angle!r}, 10.0, 1010.0)
                compare(alt, {alt!r}, 0.000000001 * arcsecond)
            """)

    usno = novas.make_on_surface(38.9215, -77.0669, 92.0, 10.0, 1010.0)

    ra = 12.34
    for i, (tt, dec) in enumerate(product(date_floats, [56.78, -67.89])):
        alt, az = altaz_maneuver(tt, usno, ra, dec, ref=0)
        output(locals(), """\
            def test_from_altaz_{i}():
                jd = JulianDate(tt={tt!r})
                usno = de405.earth.topos(
                    '38.9215 N', '77.0669 W', elevation_m=92.0)
                a = usno(jd).from_altaz(alt_degrees={alt!r}, az_degrees={az!r})
                ra, dec, distance = a.radec(epoch=jd)
                compare(ra.hours, {ra!r}, 0.000000001 * arcsecond)
                compare(dec.degrees, {dec!r}, 0.000000001 * arcsecond)
            """)

    for i, (tt, delta_t) in enumerate(zip(date_floats, delta_t_floats)):
        jd_low = xp = yp = 0.0
        vector = [1.1, 1.2, 1.3]
        ut1 = tt - delta_t * one_second
        result = novas.ter2cel(ut1, jd_low, delta_t, xp, yp, vector)
        output(locals(), """\
            def test_ITRF_to_GCRS_conversion_on_date{i}():
                jd = JulianDate(tt={tt!r}, delta_t={delta_t!r})
                position = positionlib.ITRF_to_GCRS(jd, {vector!r})
                compare(position, {result!r}, 1e-13)
            """)

    for i, jd_tdb in enumerate(date_floats):
        result = novas.tdb2tt(jd_tdb)[1]
        output(locals(), """\
            def test_tdb_minus_tt_on_date{i}():
                result = timelib.tdb_minus_tt({jd_tdb!r})
                compare(result, {result!r}, 1e-16)
            """)
Ejemplo n.º 6
0
def output_subroutine_tests(dates):
    date_floats = [d for d in dates if not isinstance(d, list)]
    delta_t_floats = [+39.707, +57.1136, +63.8285, +66.7846]

    def shorter_cal_date(jd):
        y, m, d, h = novas.cal_date(jd)
        return y, m, d + h / 24.0 - 0.5

    for i, jd in enumerate(date_floats):
        cal_date = call(shorter_cal_date, jd)
        output(locals(), """\
            def test_calendar_date_{i}():
                compare(timelib.calendar_date({jd!r}), array({cal_date}), 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.era(jd)
        output(locals(), """\
            def test_earth_rotation_angle_date{i}():
                compare(earthlib.earth_rotation_angle({jd!r}), {angle},
                        0.000001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        angles = novas.e_tilt(jd)
        output(locals(), """\
            def test_earth_tilt_date{i}():
                compare(nutationlib.earth_tilt(JulianDate(tdb={jd!r})),
                        array({angles}), 0.00001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        terms = novas.ee_ct(jd, 0.0, 0)
        output(locals(), """\
            def test_equation_of_the_equinoxes_complimentary_terms_date{i}():
                compare(nutationlib.equation_of_the_equinoxes_complimentary_terms({jd!r}),
                        array({terms}), 0.0000000000000001 * arcsecond)
            """)

    vector = (1.1, 1.2, 1.3)
    tie1 = novas.frame_tie(vector, 0)
    tie2 = novas.frame_tie(vector, -1)
    output(locals(), """\
        def test_forward_frame_tie():
            compare(framelib.ICRS_to_J2000.dot({vector}), {tie1}, 1e-15)

        def test_reverse_frame_tie():
            compare(framelib.ICRS_to_J2000.T.dot({vector}), {tie2}, 1e-15)
        """)

    for i, jd in enumerate(date_floats):
        jcentury = (jd - T0) / 36525.0
        arguments = novas.fund_args(jcentury)
        output(locals(), """\
            def test_fundamental_arguments_date{i}():
                compare(nutationlib.fundamental_arguments({jcentury!r}),
                        array({arguments}), 0.000000001 * arcsecond)
            """)

    for i, jd in enumerate(date_floats):
        psi, eps = nutation_module.iau2000a(jd, 0.0)
        psi *= 1e7 / ASEC2RAD
        eps *= 1e7 / ASEC2RAD
        output(locals(), """\
            def test_iau2000a_date{i}():
                compare(nutationlib.iau2000a({jd!r}),
                        array([{psi}, {eps}]), 0.001)
            """)

    for i, args in enumerate([
          (-4712, 1, 1, 0.0),
          (-4712, 3, 1, 0.0),
          (-4712, 12, 31, 0.5),
          (-241, 3, 25, 19.0),
          (530, 9, 27, 23.5),
          (1976, 3, 7, 12.5),
          (2000, 1, 1, 0.0),
          ]):
        jd = novas.julian_date(*args)
        output(locals(), """\
            def test_julian_date_function_date{i}():
                compare(timelib.julian_date{args}, {jd!r}, 0.0)
            """)

    for i, jd in enumerate(date_floats):
        angle = novas.mean_obliq(jd)
        output(locals(), """\
            def test_mean_obliquity_date{i}():
                compare(nutationlib.mean_obliquity({jd!r}),
                        {angle!r}, 0.0)  # arcseconds
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = nutation_function(jd, vector)
        output(locals(), """\
            def test_nutation_date{i}():
                matrix = nutationlib.compute_nutation(JulianDate(tdb={jd!r}))
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-14)
            """)

    for i, jd in enumerate(date_floats):
        vector = [1.1, 1.2, 1.3]
        result = novas.precession(T0, vector, jd)
        output(locals(), """\
            def test_precession_date{i}():
                matrix = precessionlib.compute_precession({jd!r})
                result = einsum('ij...,j...->i...', matrix, [1.1, 1.2, 1.3])
                compare({result},
                        result, 1e-15)
            """)

    for i, jd in enumerate(date_floats):
        result1 = novas.sidereal_time(jd, 0.0, 0.0, False, True)
        result2 = novas.sidereal_time(jd, 0.0, 99.9, False, True)
        output(locals(), """\
            def test_sidereal_time_on_date{i}():
                jd = JulianDate(tt={jd!r})
                compare(earthlib.sidereal_time(jd), {result1!r}, 1e-13)

            def test_sidereal_time_with_nonzero_delta_t_on_date{i}():
                jd = JulianDate(tt={jd!r} + 99.9 * one_second, delta_t=99.9)
                compare(earthlib.sidereal_time(jd), {result2!r}, 1e-13)
            """)

    p, v = novas.starvectors(novas.make_cat_entry(
        'POLARIS', 'HIP', 0, 2.530301028, 89.264109444,
        44.22, -11.75, 7.56, -17.4))
    output(locals(), """\
        def test_star_vector():
            star = starlib.Star(ra_hours=2.530301028, dec_degrees=89.264109444,
                                ra_mas_per_year=44.22, dec_mas_per_year=-11.75,
                                parallax_mas=7.56, radial_km_per_s=-17.4)
            compare(star._position,
                    {p},
                    1e3 * meter)
            compare(star._velocity,
                    {v},
                    1e-6 * meter)
        """)

    for i, (tt, delta_t) in enumerate(zip(date_floats, delta_t_floats)):
        jd_low = xp = yp = 0.0
        vector = [1.1, 1.2, 1.3]
        ut1 = tt - delta_t * one_second
        result = novas.ter2cel(ut1, jd_low, delta_t, xp, yp, vector)
        output(locals(), """\
            def test_ITRF_to_GCRS_conversion_on_date{i}():
                jd = JulianDate(tt={tt!r}, delta_t={delta_t!r})
                position = positionlib.ITRF_to_GCRS(jd, {vector!r})
                compare(position, {result!r}, 1e-13)
            """)

    for i, jd_tdb in enumerate(date_floats):
        result = novas.tdb2tt(jd_tdb)[1]
        output(locals(), """\
            def test_tdb_minus_tt_on_date{i}():
                result = timelib.tdb_minus_tt({jd_tdb!r})
                compare(result, {result!r}, 1e-16)
            """)