Ejemplo n.º 1
0
        def nllNormalConditional(d_x_t):
            x_t = util.make_rigid_transform(R_x_t, d_x_t)

            t1 = m.algi(m.logm(m.inv(x[t - 1]).dot(x_t)))
            nll = 0.5 * t1.dot(Qi).dot(t1)

            return nll
Ejemplo n.º 2
0
    def test_decomp(s):
        T, K, N, grp = (3, 1, 0, 'se2')
        o, x, theta, E, S, Q, y, z = tu.GenerateRandomDataset(T, K, N, grp)
        m = getattr(lie, o.lie)

        # infer d_x_t in forward direction
        t = 1

        R_x_tminus1, d_x_tminus1 = m.Rt(x[t - 1])
        R_x_tplus1, d_x_tplus1 = m.Rt(x[t + 1])
        R_x_t, _ = m.Rt(x[t])

        V_x_tminus1_x_t_inv = m.getVi(m.inv(x[t - 1]).dot(x[t]))
        _, d_x_tminus1_x_t = m.Rt(m.inv(x[t - 1]).dot(x[t]))
        u_x_t = m.algi(m.logm(m.inv(x[t - 1]).dot(x[t])))[:-1]
        norm = np.linalg.norm(u_x_t - V_x_tminus1_x_t_inv.dot(d_x_tminus1_x_t))
        assert norm < 1e-8, 'bad norm'

        V_x_t_x_tplus1_inv = m.getVi(m.inv(x[t]).dot(x[t + 1]))
        _, d_x_t_x_tplus1 = m.Rt(m.inv(x[t]).dot(x[t + 1]))
        u_x_tplus1 = m.algi(m.logm(m.inv(x[t]).dot(x[t + 1])))[:-1]
        norm = np.linalg.norm(u_x_tplus1 -
                              V_x_t_x_tplus1_inv.dot(d_x_t_x_tplus1))
        assert norm < 1e-8, 'bad norm'

        x_t = util.make_rigid_transform(R_x_t, d_x_tminus1)
        V_x_tminus1_x_t_inv = m.getVi(m.inv(x[t - 1]).dot(x_t))
        _, d_x_tminus1_x_t = m.Rt(m.inv(x[t - 1]).dot(x_t))
        u_x_t = m.algi(m.logm(m.inv(x[t - 1]).dot(x_t)))[:-1]
        norm = np.linalg.norm(u_x_t - V_x_tminus1_x_t_inv.dot(d_x_tminus1_x_t))
        assert norm < 1e-8, 'bad norm'

        x_t = util.make_rigid_transform(R_x_t, d_x_tminus1)
        V_x_t_x_tplus1_inv = m.getVi(m.inv(x_t).dot(x[t + 1]))
        _, d_x_t_x_tplus1 = m.Rt(m.inv(x_t).dot(x[t + 1]))
        u_x_tplus1 = m.algi(m.logm(m.inv(x_t).dot(x[t + 1])))[:-1]
        norm = np.linalg.norm(u_x_tplus1 -
                              V_x_t_x_tplus1_inv.dot(d_x_t_x_tplus1))
        assert norm < 1e-8, 'bad norm'