Ejemplo n.º 1
0
def test_betai_symmetry():
    """
        Checks relation Ix(a, b) = 1 - Ix-1(b, a)
    """
    a, b, x = 1, 10, 0.15

    calculated_value = nr.betai(a, b, x) + nr.betai(b, a, 1 - x)
    expected_value = 1

    assert_almost_equal(calculated_value, expected_value)
Ejemplo n.º 2
0
def test_betai_recurrence():
    """
        Checks relation Ix(a, b) = xIx(a−1, b) + (1−x)Ix(a, b−1)
    """
    a, b, x = 1, 10, 0.15

    calculated_value = nr.betai(a, b, x) - x * nr.betai(a - 1, b, x) - \
                       (1 - x) * nr.betai(a, b - 1, x)

    expected_value = 0

    assert_almost_equal(calculated_value, expected_value)
Ejemplo n.º 3
0
def tptest(data1, data2):
    # Given the arrays "data1" and "data2" of length "n", returns
    # the Student's "t" for paired data and its significance as "prob".

    # Small values of "prob" indicates that the arrays have different
    # means.

    n1 = len(data1)
    n2 = len(data2)

    if (n1 != n2):
        print("Data arrays must have the same size")
    else:
        n = n1

    ave1, var1 = nr.avevar(data1)
    ave2, var2 = nr.avevar(data2)

    cov = 0.0
    for i in range(n):
        cov = cov + (data1[i] - ave1) * (data2[i] - ave2)

    df = n - 1.0
    cov = cov / df

    # Student's t
    t = (ave1 - ave2) / np.sqrt((var1 + var2 - 2.0 * cov) / n)

    # significance
    prob = nr.betai(0.5 * df, 0.5, df / (df + t**2))

    return t, prob
Ejemplo n.º 4
0
def ttest(data1, data2):
    # Given the arrays "data1" and "data2", returns the
    # Student's "t" and its significance as "prob".
    # Data are assumed to be drawn from populations with
    # the same true variance.
    # Small values of "prob" indicates that the arrays
    # have different means.
    n1 = len(data1)
    n2 = len(data2)

    ave1, var1 = nr.avevar(data1)
    ave2, var2 = nr.avevar(data2)

    # print(ave1, ave2)
    # print(var1, var2)

    # degrees of freedom
    df = n1 + n2 - 2.

    # pooled variance
    var = ((n1 - 1.) * var1 + (n2 - 1) * var2) / df

    # Student's t
    t = (ave1 - ave2) / np.sqrt(var * (1 / n1 + 1 / n2))

    # significance
    prob = nr.betai(0.5 * df, 0.5, df / (df + t**2))

    return t, prob
Ejemplo n.º 5
0
def tutest(data1, data2):
    # Given the arrays "data1" and "data2", returns the
    # Student's "t" and its significance as "prob".
    # Data are assumed to be drawn from populations with
    # the same true variance.

    # Small values of "prob" indicates that the arrays
    # have different means.
    n1 = len(data1)
    n2 = len(data2)

    ave1, var1 = nr.avevar(data1)
    ave2, var2 = nr.avevar(data2)

    # print(ave1, ave2)
    # print(var1, var2)

    # Student's t
    t = (ave1 - ave2) / np.sqrt(var1/n1 + var2/n2)
    df = (var1/n1 + var2/n2)**2 / ((var1/n1)**2 / (n1 - 1) + (var2/n2)**2 / (n2 - 1))
    
    # significance
    prob = nr.betai(0.5 * df, 0.5, df/(df + t**2))

    return t, prob
Ejemplo n.º 6
0
def test_betai_x1():
    """
        Checks betai output for x = 1
    """
    a, b, x = 0.5, 0.5, 1

    calculated_value = nr.betai(a, b, x)
    expected_value = 1

    assert_almost_equal(calculated_value, expected_value)
Ejemplo n.º 7
0
def biwt_tutest(n1, ave1, var1, n2, ave2, var2):
    t = (ave1-ave2)/sqrt(var1/n1+var2/n2)
    df = (var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
    df = 0.7 * df
    prob = nr.betai(0.5*df,0.5,df/(df+t**2))
    return t, prob
Ejemplo n.º 8
0
def biwt_ttest(n1, ave1, var1, n2, ave2, var2):
    df = 0.7 * (n1+n2-2)
    svar = ((n1-1)*var1+(n2-1)*var2)/df
    t = (ave1-ave2)/sqrt(svar*(1.0/n1+1.0/n2))
    prob = nr.betai(0.5*df,0.5,df/(df+t**2))
    return t, prob
Ejemplo n.º 9
0
def prob(df, t):
    return (1 - nr.betai(0.5*df,0.5,df/(df+t**2))/2)